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Abstract 

Rationale: Children usually develop less severe symptoms responding to Coronavirus Disease 2019 
(COVID-19) than adults. However, little is known about the molecular alterations and pathogenesis of 
COVID-19 in children. 
Methods: We conducted plasma proteomic and metabolomic profilings of the blood samples of a cohort 
containing 18 COVID-19-children with mild symptoms and 12 healthy children, which were enrolled 
from hospital admissions and outpatients, respectively. Statistical analyses were performed to identify 
molecules specifically altered in COVID-19-children. We also developed a machine learning-based 
pipeline named inference of biomolecular combinations with minimal bias (iBM) to prioritize proteins and 
metabolites strongly altered in COVID-19-children, and experimentally validated the predictions.  
Results: By comparing to the multi-omic data in adults, we identified 44 proteins and 249 metabolites 
differentially altered in COVID-19-children against healthy children or COVID-19-adults. Further 
analyses demonstrated that both deteriorative immune response/inflammation processes and protective 
antioxidant or anti-inflammatory processes were markedly induced in COVID-19-children. Using iBM, 
we prioritized two combinations that contained 5 proteins and 5 metabolites, respectively, each 
exhibiting a total area under curve (AUC) value of 100% to accurately distinguish COVID-19-children 
from healthy children or COVID-19-adults. Further experiments validated that all the 5 proteins were 
up-regulated upon coronavirus infection. Interestingly, we found that the prioritized metabolites inhibited 
the expression of pro-inflammatory factors, and two of them, methylmalonic acid (MMA) and mannitol, 
also suppressed coronaviral replication, implying a protective role of these metabolites in 
COVID-19-children. 
Conclusion: The finding of a strong antagonism of deteriorative and protective effects provided new 
insights on the mechanism and pathogenesis of COVID-19 in children that mostly underwent mild 
symptoms. The identified metabolites strongly altered in COVID-19-children could serve as potential 
therapeutic agents of COVID-19. 

 

Introduction 
The pandemic of Coronavirus Disease 2019 

(COVID-19) caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has become 
the worst public health crisis once a century, which 
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has caused almost 180 million infections and 4 million 
deaths all over the world as of June 23, 2021. It has 
been found that all people are susceptible to 
SARS-CoV-2 without significant differences in sex or 
age [1-3], and SARS-CoV-2 infects children under 
18-year-old at a similar rate as adults [4]. Reports from 
different countries showed that the symptoms are 
milder in the overwhelming majority of 
COVID-19-children compared to that of 
COVID-19-adults [1-3, 5-10]. Most COVID-19-children 
have minor symptoms or asymptomatic infections, 
whereas severe conditions such as acute respiratory 
distress syndrome and multisystem inflammatory 
syndrome are rare in COVID-19-children [11-13].  

Several theories have been proposed to explain 
the differences in clinical symptoms between children 
and adults infected with COVID-19 [14]. One 
plausible theory is that children might have a distinct 
response to SARS-CoV-2 in comparison with adults, 
mainly attributed to the differences in the 
composition and functional responsiveness of the 
immune system between children and adults [15, 16]. 
For example, T and B cell responses to novel 
pathogens in children, such as natural antibodies 
rapidly produced from memory B cells, were not seen 
in adults [17]. Also, young children are usually 
infected with other simultaneous viruses in the 
mucosa of lungs and airways [18], which might 
restrict the infection of SARS-CoV-2 via virus to virus 
interaction and competition. In addition, differences 
in the maturity and function of the viral entry receptor 
angiotensin-converting enzyme (ACE2) between 
children and adults might differentially influence the 
cellular entry of SARS-CoV-2 [19]. So far, the 
molecular alterations in COVID-19-children remain to 
be studied, and such an effort will be helpful for better 
understanding the detailed mechanisms underlying 
the differences in clinical symptoms between children 
and adults. 

Recently, multiple reports showed that the 
immune system of COVID-19-children is less likely to 
elicit an excessive inflammatory response and 
cytokine storm, as frequently observed in 
COVID-19-adults [19-22]. Thus, one explanation is 
that global molecular alterations in 
COVID-19-children might be milder, and the 
deteriorative process of COVID-19 might not be 
strongly induced in COVID-19-children. However, 
children are more susceptible to other infections [17], 
and molecular alterations in COVID-19-children 
might also be dramatically induced, whereas some 
protective mechanisms might be elicited to 
antagonize the deterioration of the disease. To test this 
hypothesis, we collected plasma samples from a 
Chinese cohort of 18 COVID-19-children and 12 

healthy children, and conducted both proteomic and 
metabolomic profilings. We compared the multi-omic 
data of children to those of adults with or without 
COVID-19 that were quantified in our previous 
studies [23, 24], and uncovered numerous molecular 
alterations specifically occurred in 
COVID-19-children against healthy children or 
COVID-19-adults. Moreover, we developed a new 
pipeline named inference of biomolecular 
combinations with minimal bias (iBM), and predicted 
5 proteins and 5 metabolites to be strongly altered in 
COVID-19-children. Further analyses revealed an 
antagonistic effect that both deteriorative immune 
response/inflammation processes and protective 
antioxidant or anti-inflammatory processes were 
up-regulated to a strong extent, indicating that the 
immune system of COVID-19-children might be in a 
relatively balanced state to both restrict SARS-CoV-2 
infection and prevent the deterioration of the disease. 
Following experiments not only validated the changes 
of the 5 proteins in expression upon coronavirus 
infection, but also uncovered the regulatory roles of 
the prioritized metabolites in suppressing viral 
replication and inflammation. Taken together, our 
findings shed lights on a better understanding of the 
mild COVID-19 symptom in children, and provided 
candidate therapeutic agents for further treatment of 
the disease.  

Results  
Study design and blood samples 

We collected the blood samples of 30 children 
including 18 COVID-19-children and 12 healthy 
children from Guangzhou Women and Children's 
Medical Center (Figure 1). All COVID-19-children 
were diagnosed as mild symptoms based on the 
Diagnosis and Treatment Protocol for Novel 
Coronavirus Pneumonia (6th edition) of the National 
Health Commission of China [25], and discharged 
from the hospital after recovery. The clinical data of 
the 18 COVID-19-children was shown, and no severe 
or critically ill cases were charged in our cohort (Table 
1). The 12 healthy children, whose throat swab tests 
and serological tests were negative for SARS-CoV-2, 
were enrolled for comparison (Table 1).  

For each blood sample, plasma was separated. 
For the proteomic profiling, the 30 plasma samples 
containing digested peptides were separated into 2 
batches, subjected to tandem mass tag (TMT) labeling 
(Table S1), and analyzed by liquid chromatography 
with tandem mass spectrometry (LC-MS/MS), which 
was also used for the metabolomic quantification. In 
total, we obtained 757 proteins and 1171 metabolites 
quantified in at least one sample (Table S2, S3). More 
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details on the quality control and analysis of the 
multi-omic data were present in Supplementary 
results. Recently, we also conducted metabolomic and 
proteomic profilings of plasma samples from adults 
with or without SARS-CoV-2 infection, and identified 
numerous molecular alterations associated with 
COVID-19 in adults [23, 24]. From our two previous 
studies, we obtained the TMT-based quantitative 
proteomic data of 43 COVID-19-adults and 13 healthy 
adults, and metabolomic data of 34 COVID-19-adults 
and 10 healthy adults. In total, there were 1033 
proteins and 1129 metabolites quantified in at least 
one sample of COVID-19-adults and healthy adults.  

 

Table 1. Clinical characteristics of COVID-19-children and 
healthy children enrolled in this study. a. ND, not detected.  

 COVID-19-children 
(n = 18) 

Healthy children (n 
= 12) 

Age-year   
Median (IQR) 7 (5, 12) 6 (3, 7) 
Sex-no. (%)   
Female 5 (27.78%) 4 (33.33%) 
Male 13 (72.22%) 8 (66.67%) 
Throat swab for SARS-CoV-2 (days)   
Median (IQR) 6 (4, 14) 0 
Sampling time from the disease onse
t (days)  

  

Median (IQR) 7 (10, 13) 0 
Co-infection-no. (%)   
Other viruses NDa ND 
Bacteria ND ND 
 Fungus ND ND 
Clinical outcome-no. (%)   
Discharged 18 (100%) ND 
Blood routine- Median (IQR)   
WBC (×109/L, normal range 5-12) 6.90 (5.50, 8.55) 6.80 (6.53, 7.35) 

 COVID-19-children 
(n = 18) 

Healthy children (n 
= 12) 

Lymphocyte (×109/L, normal range 
1.5-4.8) 

2.60 (2.07, 4.19) 3.38 (2.95, 3.94) 

Neutrophil (×109/L, normal range 
2-7.2) 

2.58 (2.15, 3.24) 2.74 (2.38, 3.38) 

CD19+ (cells/μL, normal range 
90-660) 

396.35 (236.82, 800.53) ND 

CD3+ (cells/μL, normal range 
690-2540) 

1232.74 (967.60, 
2305.85) 

ND 

CD3+CD4+ (cells/μL, normal range 
410-1590) 

655.44 (459.88, 1150.56) ND 

 CD3+CD8+ (cells/μL, normal range 
190-1140) 

482.67 (386.66, 859.49) ND 

 NK (cells/μL, normal range 90-590) 334.34 (194.04, 438.04) ND 
Platelet (×109/L, normal range 
140-440) 

299.50 (263.00, 333.75) 307.00 (242.50, 
362.75) 

RBC (×1012/L, normal range 4-4.5) 4.66 (4.37, 5.36) 4.79 (4.29, 4.93) 
Haemoglobin (g/L, normal range 
105-145) 

124.50 (119.00, 141.75) ND 

APTT (s, normal range 28-45) 40.50 (37.40, 42.60) ND 
PT (s, normal range 11-15) 13.40 (13.15, 13.90) ND 
D-dimer (μg/mL, normal range, 
0-1.5 ) 

0.31 (0.26, 0.40) ND 

Cytokines- Median (IQR)   
IFN-γ (pg/mL, normal range 0-6.56) 4.62 (3.97, 6.07) ND 
IL-10 (pg/mL, normal range 0-8.14) 1.98 (1.74, 2.91) ND 
IL-12p70 (pg/mL, normal range 
0-6.9) 

2.89 (1.77, 4.38) ND 

IL-17A (pg/mL, normal range 0-3.71) 5.98 (3.67, 8.76) ND 
IL-1β (pg/mL, normal range 0-3.12) 0.94 (0.59, 1.70) ND 
IL-2 (pg/mL, normal range 0-5.03) 4.33 (2.71, 5.01) ND 
IL-22 (pg/mL, normal range 0-2.61) 2.53 (1.66, 4.40) ND 
IL-4 (pg/mL, normal range 0-4.62) 3.37 (2.89, 5.42) ND 
IL-5 (pg/mL, normal range 0-3.73) 2.45 (1.94, 3.47) ND 
IL-6 (pg/mL, normal range 0-8.88) 3.84 (2.33, 6.58) ND 
IL-8 (pg/mL, normal range 0-15.71) 6.55 (4.37, 9.34) ND 
TNF-α (pg/mL, normal range 0-5.35) 5.35 (4.12, 6.95) ND 

 

 
Figure 1. Study design and blood samples. Overview of plasma samples collected from COVID-19-children (n = 18) and healthy children (n = 12). The workflow for 
processing the proteomic and metabolomic data was shown, including the plasma separation, TMTpro 16-plex labeling, metabolite extraction, LC-MS/MS analysis, database 
search and further computational analyses. The proteomic data of 43 COVID-19-adults and 13 healthy adults, and metabolomic data of 34 COVID-19-adults and 10 healthy adults 
were taken from our previous studies [23, 24], and used for further computational analyses. CC, COVID-19-children; HC, healthy children; AC, COVID-19-adults; HA, healthy 
adults. 
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Characterization of molecular alterations in 
COVID-19-children 

To identify molecular alterations in 
COVID-19-children against healthy children, we used 
relative protein abundances (RPAs) of the proteomic 
data and intensity-based abundances (IBAs) of the 
metabolomic data, and in total detected 121 
differentially expressed proteins (DEPs) and 416 
differentially expressed metabolites (DEMs), 
respectively (Figure 2A-B, |log2(fold-change or FC)| 
> 0.25, Adjusted P < 0.05). It could be found that more 
DEPs and DEMs were down-regulated in 
COVID-19-children, indicating a generally 
suppressive effect of normal biological processes in 
children upon SARS-CoV-2 infection (Figure 2A-B 
and Table S4-S5). However, up-regulated molecules 
exhibited stronger changes in expression, supporting 
that COVID-19-associated molecular alterations are 
also induced in children.  

To further identify molecular alterations in 
COVID-19-children against COVID-19-adults, the 
intrinsic differences between adults and children were 
eliminated by calculating normalized abundance 
values (NAVs) of proteins and metabolites in 
COVID-19-children or COVID-19-adults against their 
counterparts in the samples of healthy children or 
adults, respectively. Again, 332 proteins and 783 
metabolites simultaneously quantified in > 80% 
children and adults were reserved to ensure the data 
quality, and principal component analysis (PCA) 
demonstrated that COVID-19-children and 
COVID-19-adults can be clearly distinguished either 
by the proteomic or metabolomic data (Figure S4A-B). 
Using NAVs, we identified 196 DEPs and 449 DEMs 
in COVID-19-children against COVID-19-adults 
(Figure 2C-D, |log2(FC)| > 0.25, Adjusted P < 0.05, 
Table S6-S7). Although the numbers of up- and 
down-regulated DEPs were similar in 
COVID-19-children, much more metabolites were 
down-regulated in COVID-19-children, indicating a 
stronger suppressive effect of metabolic process in 
COVID-19-children than in COVID-19-adults.  

Next, we used the annotations of Gene Ontology 
(GO) biological processes and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways, and 
performed functional enrichment analyses for 
proteins and metabolites, respectively (Figure 2E-F 
and Table S8-S9). We found that a considerable 
number of biological processes and metabolic 
pathways enriched in COVID-19-children against 
COVID-19-adults or healthy children were 
overlapped, such as platelet degranulation 

(GO:0002576), blood coagulation (GO:0007596), 
fibrinolysis (GO:0042730) and plasminogen activation 
(GO:0031639) in the proteomic level (Figure 2E), and 
ABC transporters (KEGG ID: map02010), biosynthesis 
of amino acids (KEGG ID: map01230) and pyrimidine 
metabolism (KEGG ID: map00240) in the metabolic 
level (Figure 2F). Although most of these 
processes/pathways were also enriched in the blood 
samples of COVID-19-adults [23, 24], they were 
altered to a much stronger extent in 
COVID-19-children. By overlapping DEPs and DEMs 
of COVID-19-children against healthy children or 
COVID-19-adults, we identified 44 DEPs and 249 
DEMs specifically altered in COVID-19-children, 
respectively (Figure 2G-H and Table S10-S11). We 
performed functional enrichment analyses for these 
DEPs (Figure 2I) and DEMs (Figure 2J and Table 
S8-S9), respectively. Again, blood coagulation-related 
processes were highly enriched at the proteomic level, 
while anabolism-related pathways involved in amino 
acid biosynthesis were enriched in the metabolic level 
(Figure S4C-D), suggesting potential roles of these 
physiological changes in children responding to 
COVID-19. 

Machine learning-based inference of molecules 
strongly altered in COVID-19-children 

Although 44 DEPs and 249 DEMs were 
identified (Figure 2G-H), different molecules were 
altered with distinct extents in COVID-19-children. 
Identification of optimal biomolecular combinations 
will be not only helpful for accurate classification of 
different types of patients, but also provide useful 
information for uncovering the potential pathogenesis 
of COVID-19 in children. Here, we developed a new 
pipeline named iBM, which consisted of three steps, 
including mutual DEPs or DEMs selection (MDS), 
candidate combination generation (CCG) to randomly 
select 10,000 combinations, and final combination 
prioritization (FCP) to get the protein or metabolite 
combination with a maximal accuracy and a minimal 
bias through the 5-fold cross-validation (Figure 3A). 
The accuracy of a candidate model was evaluated by 
calculating the total area under curve (AUC) value, 
and we also computed the total root mean squared 
error (RMSE) to measure the prediction bias. In the 
step of FCP, a widely-used machine learning 
algorithm, penalized logistic regression (PLR) [26-28], 
was used for model training and parameter 
optimization (Figure 3A). The combinations were 
separately determined for the proteomic and 
metabolic data. 
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Figure 2. Proteomic and metabolomic alterations specifically occurred in COVID-19-children. A,B Volcano plots show the protein (A) and metabolite (B) 
alterations in COVID-19-children against healthy children. C,D Volcano plots show the protein (C) and metabolite (D) alterations in COVID-19-children against 
COVID-19-adults. Proteins and metabolites with |log2(FC)| > 0.25 with an adjusted P < 0.05 were considered as potential DEPs and DEMs, respectively. E GO-based enrichment 
analysis for DEPs of COVID-19-children against healthy children or COVID-19-adults (Two-sided hypergeometric test, m ≥ 5, adjusted P < 10-5). F KEGG-based enrichment 
analysis for DEMs of COVID-19-children against healthy children or COVID-19-adults (Two-sided hypergeometric test, m ≥ 5, adjusted P < 10-3). G,H DEPs (G) and DEMs (H) 
specifically altered in COVID-19-children were identified by overlapping DEPs and DEMs of COVID-19-children against healthy children and against COVID-19-adults, 
respectively. I GO-based enrichment analysis of DEPs specifically altered in COVID-19-children shown in the term of biological processes (Two-sided hypergeometric test, m ≥ 
5, adjusted P < 0.01). J KEGG-based enrichment analysis of DEMs specifically altered in COVID-19-children (Two-sided hypergeometric test, m ≥ 5, adjusted P < 0.01). CC, 
COVID-19-children; HC, healthy children; AC, COVID-19-adults. 
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Figure 3. Inference of biomolecular combinations specifically altered in COVID-19-children using a machine learning strategy. A The workflow of iBM, 
including MDS, CCG and FCP to prioritize candidate combinations with a maximal accuracy and a minimal bias from the 5-fold cross-validation. B From the 5-fold 
cross-validation, AUC values of the protein combination for distinguishing COVID-19-children from healthy children or COVID-19-adults was calculated. C,D The confusion 
matrices of the protein combination for distinguishing COVID-19-children from healthy children (C) or COVID-19-adults (D). E From the 5-fold cross-validation, AUC values 
of the metabolite combination for distinguishing COVID-19-children from healthy children or COVID-19-adults was calculated.F,G The confusion matrices of the metabolite 
combination for distinguishing COVID-19-children from healthy children (F) or COVID-19-adults (G). H,I The RMSE results of the protein combination for distinguishing 
COVID-19-children from healthy children (H) or COVID-19-adults (I). J,K The RMSE results of the metabolite combination for distinguishing COVID-19-children from healthy 
children (J) or COVID-19-adults (K). L,M The expression levels of 5 proteins in COVID-19-children against healthy children (L) or against COVID-19-adults (M). N,O The 
expression levels of 5 metabolites in COVID-19-children against healthy children (N) or against COVID-19-adults (O). The center line within each box showed the median, and 
the top and bottom of each box represented the 75th and 25th percentile values, respectively. The upper and lower whiskers extended from the hinge to the largest and smallest 
value no further than 1.5 times the distance between the first and third quartiles, respectively. CC, COVID-19-children; HC, healthy children; AC, COVID-19-adults. 
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From the results, there were 8098 protein 
combinations and 8376 metabolite combinations with 
a total AUC value of 1 (Table S12-S13), indicating that 
too many combinations could achieve a perfect 
accuracy on the existing data. However, a minimal 
RMSE value between predicted scores and observed 
values will ensure the robustness and reliability of the 
model on the new data. With total RMSE values of 
1.83% and 7.01E-07, we prioritized two optimal 
combinations, containing 5 proteins coagulation 
factor XI and IX (F11 and F9), enolase (ENO1), 
fibrinogen alpha (FGA) and gamma (FGG) chains, 
and 5 metabolites methylmalonic acid (MMA), 
dihydroorotic acid (DHOA), indoleacetaldehyde 
(IAAld), tryptophan (TRP) and mannitol (Figure 3A). 
Both of the two combinations could perfectly 
distinguish COVID-19-children from healthy children 
or COVID-19-adults, with an AUC value of 1 (Figure 
3B-G). Moreover, the results of confusion matrices 
and RMSE analyses of these combinations also 
showed a high accuracy for classifying different 
samples (Figure 3C, D, F, G and H-O). 

Also, we calculated the total AUC values and 
total RMSE values for individual proteins or 
metabolites. For the 5 proteins, the total AUC values 
ranged from 0.77 to 1, and the total RMSE values 
ranged from 6.57% to 36.13% (Figure S5A-E, Table 
S14). For the 5 metabolites, all the total AUC values 
were 1, while the total RMSE values ranged from 
10.97% to 28.72% (Figure S5F-J, Table S14). Although 
individual molecules can reach a perfect accuracy on 
the current data, the combination of multiple 
molecules was undoubtedly important to reduce the 
prediction bias.  

The molecular alterations strongly induced in 
COVID-19-children were linked with the mild 
clinical symptom 

Besides the classification of different samples, 
the prioritized proteins and metabolites as well as 
other molecules specifically altered in 
COVID-19-children could also partially explain the 
differences in clinical symptoms between 
COVID-19-children and COVID-19-adults. In the 
protein combination, 4 proteins including F11, F9, 
FGA and FGG are involved in the blood coagulation 
cascade, and all of them were higher expressed in 
COVID-19-children than those in healthy children or 
COVID-19-adults (Figure 3L-M, Table S10). F11 and 
F9 are involved in the initiation of the thrombin 
generation during blood coagulation by proteolytic 
activation of a serial of coagulation factors [29]. FGA 
and FGG contribute to form the fibrin clot in response 
to explosive generation of thrombin mediated by 
coagulation factors [30]. Also, a Ca2+ binding protein 

S100A9, which induces inflammatory cytokine 
secretion and immune cell migration during 
inflammation [31], was higher expressed 
COVID-19-children (Table S10). These results 
indicated that immune response/inflammation 
processes were significantly induced in 
COVID-19-children. On the contrary, we found a 
number of plasma serine protease inhibitors such as 
SERPINA5, SERPINC1, and SERPINF2, which 
negatively regulate the blood coagulation cascade 
[29], were strongly up-regulated in 
COVID-19-children against in healthy children or 
COVID-19-adults (Table S10). Interestingly, ENO1, a 
key enzyme in the last steps of the catabolic glycolytic 
pathway, was significantly downregulated in 
COVID-19-children (Figure 3L-M, Table S10). It was 
reported that ENO1 is required for hypoxia-induced 
metabolic reprogramming from mitochondrial 
respiration to glycolysis [32], which is important to 
enhance the oxidant stress and inflammation [33]. 
Glycolysis is strongly induced upon SARS-CoV-2 
infection in human colonic carcinoma Caco-2 cells, 
whereas blocking this pathway using its inhibitor 
2-deoxy-D-glucose (2-DG) markedly reduced 
SARS-CoV-2 replication [34]. Thus, our results 
indicated that anti-inflammatory processes were also 
strongly triggered in COVID-19-children. 

In the metabolite combination, all the 5 
metabolites were significantly up-regulated in 
COVID-19-children against in healthy children or 
COVID-19-adults (Figure 3N-O, Table S11). DHOA is 
involved in the pyrimidine metabolism, and the 
secretion of DHOA can reduce the toxicity of glucose 
metabolism reprogramming in response to hypoxia 
[35]. TRP could be metabolized to other indole 
compounds such as IAAld. The downstream products 
of TRP such as N-formylkynurenine (KYN) and its 
intermediates, are agonists to activate the aryl 
hydrocarbon receptor (AhR), which contributes to the 
immunosuppression and restriction of inflammation 
[36]. In particular, the expression of KYN in 
COVID-19-children was lower than in healthy 
children, but much higher than in COVID-19-adults 
(Table S11), suggesting that AhR was still active and 
the SARS-CoV-2-induced immune response/ 
inflammation processes was still under the control in 
COVID-19-children. Furthermore, mannitol has been 
found to be a hydroxyl radical scavenger that plays 
important roles in reducing inflammation [37]. In 
addition, MMA is a dicarboxylic acid that is primarily 
a by-product of the propionate metabolism. It was 
shown that the elevated circulating MMA level 
caused an up-regulated expression of Sex-deter-
mining region Y box 4 (SOX4), which consequently 
promoted transcriptional reprogramming [38]. The 
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role of MMA in the regulation of immune response 
and inflammation remained to be dissected. Besides 
the 5 prioritized metabolites, we also found other 
metabolites having the potential to relieve the 
exacerbated inflammation. For example, uric acid 
(UA), an end product of purine catabolism, is a major 
antioxidant in the blood, and can be helpful for 
protection against free-radical oxidative damage [39]. 
The plasma level of UA in COVID-19-children was > 
109-fold higher than that in COVID-19-adults (Table 
S11).  

Together, our findings indicated that both deter-
iorative immune response/inflammation processes 
and protective antioxidant or anti-inflammatory 
processes were significantly elevated in the 
circulating system of COVID-19-children compared 
with healthy children or COVID-19-adults. Consistent 
with this, the clinical data of COVID-19-children 
showed that the levels of coagulation indicators such 
as APTT, PT and D-dimer, the status of immune cell 
activation such as the ratios of CD3+CD4+ and 
CD3+CD8+, and the levels of inflammatory factors 
such as IFN-γ and IL-1β, generally followed in the 
normal range (Table 1).  

Validation of expressions or regulatory roles of 
prioritized molecules upon coronavirus 
infection  

For the protein combination, we measured their 
mRNA expression changes in cells with or without 
coronavirus infection, using the quantitative reverse 
transcription PCR (qRT-PCR). We used the mouse 
hepatitis virus (MHV, strain A59) [40], a well-known 
surrogate for SARS-CoV-2 [41], to infect rat lung 
epithelial L2 cells at a multiplicity of infection (MOI) 
of 0.1. At 12 h post-infection, total cellular RNAs were 
extracted and the mRNA expression of each protein 
was separately examined (Table S15). In consistent 
with the proteomic data, MHV infection resulted in 
significantly enhanced mRNA levels of F9, F11, FGA 
and FGG, and markedly reduced the mRNA 
expression of ENO1 (Figure 4A). 

For the metabolite combination, we individually 
exploited their functional impacts on viral replication 
and inflammation in the context of MHV infection. 
IAAld was not probed because it’s a downstream 
product of TRP and its biological impact is similar to 
TRP. For each of the remaining 4 metabolites, the cell 
counting kit-8 (CCK-8) assay was adopted to measure 
the 50% cytotoxic concentration (CC50) in L2 cells at 
different concentrations. The CC50 values of all the 4 
metabolites were greater than 1280 μM, indicating 
low cytotoxicity of the metabolites (Figure S6A-D). 
Then, for or each of the 4 metabolites at a 
concentration of 5 or 10 μM, L2 cells were pre-treated 

for 1 h, and then infected with MHV at an MOI of 0.1. 
At 12 h post-infection, total cellular RNAs were 
extracted and the viral RNA accumulation as well as 
the mRNA levels of 5 inflammatory cytokines, such as 
IL-6, IL-1β, TNF-α, TGF-β and IL-10, were examined 
using qRT-PCR. From the results, we found that two 
metabolites, MMA and mannitol but not DHOA or 
TRP, markedly reduced the RNA accumulation level 
of MHV (Figure 4B-E). Also, we found that the 4 
metabolites could reduce the mRNA expression of at 
least one inflammatory cytokine in MHV-infected 
cells (Figure 4F-I). For example, the pre-treatment of 
MMA for 1 h could markedly reduce the mRNA 
expression of IL-6, TNF-α, and TGF-β (Figure 4F), 
whereas both IL-6 and IL-1β were down-regulated by 
the treatment of either DHOA or mannitol (Figure 
4G,I). The pre-treatment of TRP only down-regulated 
the mRNA expression of IL-6 (Figure 4H). Taken 
together, our experiments not only validated the 
proteins that might be truly altered upon SARS-CoV-2 
infection, but also revealed a protective role of some 
of the prioritized metabolites in inhibiting viral 
replication and inflammatory cytokines.  

Discussion  
The infection rate of SARS-CoV-2 to children is 

similar to that of adults, but the clinical symptom is 
much milder in most cases of COVID-19-children 
[1-10]. Therefore, a better understanding of the 
mechanisms underlying the milder COVID-19 
symptom in children is particularly important to 
uncover the pathogenesis of this disease. For this 
purpose, we conducted a multi-omic study to profile 
plasma proteomic and metabolomic alterations in 
COVID-19-children and healthy children, and 
identified molecule alternations specifically occurred 
in COVID-19-children by comparing with the 
multi-omic data of adults with or without COVID-19. 
By developing a new pipeline named iBM, we 
prioritized two optimal biomolecular combinations, 
each of them containing 5 proteins or 5 metabolites. 
Each combination could accurately distinguish the 
samples of COVID-19-children against healthy 
children or COVID-19-adults, with a total AUC of 1. 
Previously, Cotugno et al. developed a similar 
pipeline to predict the immunogenicity of influenza 
trivalent inactivated vaccine in children infected with 
human immunodeficiency virus (HIV) [42]. Similar to 
MDS, the first step of iBM, the differentially expressed 
genes were selected based on the Wilcoxon Rank Sum 
Test, from 96 profiled genes. Also, multiple machine 
learning methods were used to further narrow down 
the number of candidates, and this step was similar to 
the CCG step. Finally, an ensemble machine learning 
algorithm, Adaptive Boosting or AdaBoost, was used 
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to determine the final gene combination with the best 
performance, and this step was also similar to our 
FCP. In that study, the prediction bias of the model 
was not estimated. To validate the iBM-based 
predictions, we probed the mRNA expression 
changes of the 5 prioritized proteins upon coronavirus 

infection, and the results were consistent with the 
proteomic data. In addition, we found 2 metabolites, 
MMA and mannitol, involved in suppressing viral 
replication, and 4 metabolites, MMA, DHOA, TRP 
and mannitol, to be functional in reducing 
inflammatory effect.  

 

 
Figure 4. Expressions or regulatory roles of molecules prioritized by iBM upon coronavirus infection. A Rat lung epithelial L2 cells were infected with MHV at MOI 
of 0.1. At 12 h post-infection, total cellular RNAs were extracted, and the mRNA levels of F9, F11, FGA, FGG and ENO1 were examined using qRT-PCR before (Mock) and after 
infection. B-E L2 cells were treated with MMA (B), DHOA (C), TRP (D) or mannitol (E) at the concentration of 5 or 10 μM, respectively, for 1 h, and then infected with MHV 
at MOI = 0.1, respectively. At 12 h post-infection, the total cellular RNAs were extracted. The viral RNA accumulations were determined via qRT-PCR with or without treatment 
of each of the metabolites. F-I The mRNA levels of IL-6, IL-1β, TNF-α, TGF-β and IL-10 were determined via qRT-PCR before (Mock) and after infection, as well as with or 
without treatment of each of the metabolites. The qRT-PCR results were statistically analyzed by t-test (GraphPad Prism). ns > 0.05, *P < 0.05, **P < 0.05, and ***P < 0.001. 
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Figure 5. Key proteins and metabolites specifically altered in COVID-19-children. In this model, the plasma proteins involved in coagulation cascade were significantly 
higher expressed in COVID-19-children compared with COVID-19-adults, suggesting COVID-19-associated coagulation and the accompanying immune response/inflammation 
in COVID-19-children may be strongly active. On the other hand, the levels of many negative regulators of inflammation and oxidation, such as MMA, TRP, IAAld, DHOA, 
mannitol and UA in COVID-19-children were also significantly up-regulated compared with those in COVID-19-adults, indicating an antagonistic effect. Thus, the immune system 
in COVID-19-children is in a relatively balanced state, in which its activation is stronger than that of COVID-19-adults and is sufficient to restrict SARS-CoV-2 infection, as well 
as the collateral damages. Meanwhile, the molecules involved in anti-oxidant and anti-inflammatory processes were also strongly activated in COVID-19-children, thereby 
preventing the exacerbation of inflammation and the deterioration of disease. CC, COVID-19-children; AC, COVID-19-adults. 

 
Compared to healthy children, the 5 metabolites 

were highly up-regulated in COVID-19-children, with 
FC values of 2.58 to DHOA, 11.78 to TPR, 1.90 to 
IAAld, 446.26 to mannitol, and 3.20 to MMA, 
respectively (Table S5, adjusted P < 0.05). All the 5 
prioritized metabolites could be taken from the diet 
[43-47]. DHOA is a derivative of vitamin B13 or orotic 
acid that widely exists in bovine milk and dairy 
products [45], whereas TRP is highly expressed in 
meats [46]. Mannitol plays a critical role in energy 
reserves and osmoregulation, and is commonly found 
in vegetables such as celery and leek [43]. The 
elevated levels of MMA and homocysteine in the 
serum are indicators of vitamin B12 deficiency [44, 47]. 
However, no children underwent a special diet or 
vitamin B12 deficiency in our cohort, and 
homocysteine was not differentially expressed in 
COVID-19-children against healthy children in our 
plasma metabolomic data (Table S3, S5). Thus, the 
significant changes of the 5 metabolites in 
COVID-19-children might be more likely attributed to 

SARS-CoV-2 infection but not the diet.  
Then, we constructed a working model, using 

the 5 proteins and 5 metabolites prioritized by iBM, as 
well as other related molecules (Figure 5). Based on 
the pathway annotations in KEGG, this model 
included 13 DEPs and 25 DEMs strongly altered in 
COVID-19-children, and was mainly involved in 6 
pathways, including platelet activation, complement 
and coagulation cascades, glycolysis/gluconeo-
genesis, pyrimidine metabolism, biosynthesis of 
amino acids and TRP metabolism. The homeostasis of 
all the 6 pathways is related to aging. In elders, the 
platelet reactivity and activation [48], the levels of 
pyrimidine intermediates [49], and biosynthesis of 
amino acids [50] are decreased, whereas the 
expressions of coagulation factors [51], the plasma 
glucose level [52], and the degradation of tryptophan 
[53] are enhanced. Thus, the multi-omic data of 
COVID-19-children and COVID-19-adults were 
normalized by using healthy children and healthy 
adults, respectively, before the comparative analysis. 
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Such a procedure efficiently eliminated the intrinsic 
differences including age between adults and children 
(Figure S4A-B), and enabled an unbiased 
identification of DEPs and DEMs in 
COVID-19-children against COVID-19-adults (Table 
S6, S7).  

In this study, the identified alternations of 
plasma proteins and metabolites as well as their 
enriched processes/pathways in COVID-19-children 
were largely in line with the previous omic profilings 
[22-24, 54-67]. Previously, Shen et al. conducted the 
plasma proteomic and metabolomic profilings using a 
Chinese cohort of 46 COVID-19-adults and 53 healthy 
adults or non-COVID-19 patients, and identified 22 
proteins and 7 metabolites as potential biomarkers of 
COVID-19-adults [54]. Also, Messner et al. performed 
a plasma proteomic profiling with a German cohort 
containing 31 patients with different COVID-19 
severity, and validated 27 severity-related DEPs [58]. 
Based a Korean COVID-19 cohort containing 3 mild 
and 5 severe cases, Park et al. conducted a plasma 
proteomic profiling, and identified 76 DEPs to be 
potentially associated with the disease severity [59]. 
The three studies identified numerous molecular 
alterations in immune responses, inflammatory 
processes and metabolic pathways to be associated 
with the disease severity in COVID-19-adults, and the 
results were highly consistent with other following 
studies [22, 59-67]. To compare the major findings of 
this study to other existing studies, the FC/NAV 
values of COVID-19-adults against healthy adults or 
non-COVID-19 patients for the 5 proteins and 5 
metabolites were directly taken from the literature 
[54, 58, 60, 61, 63, 67], if available. From the results, it 
could be found that the 10 molecules were 
differentially expressed in COVID-19-children with a 
stronger extent than in COVID-adults (Table S16). 

In our results, F11, F9, FGG, FGA, SERPINA5, 
SERPINC1, and SERPINF2 are involved in the 
coagulation cascade, and significantly higher 
expressed in COVID-19-children compared with 
COVID-19-adults (Figure S4C, Table S6). The 
coagulation system plays important roles in immune 
responses against infections, prevents damage to 
tissues, and facilitates the repair of damaged areas 
[68]. However, over-activation of the coagulation 
cascade during the immune response to infection 
usually exacerbates production of pro-inflammatory 
cytokines, and coagulation-induced thrombin also 
exerts the activity to further augment the 
inflammation [68]. Therefore, our findings suggested 
that COVID-19-associated coagulation and the 
accompanying immune response/inflammatory 
processes in COVID-19-children are strongly induced. 
On the other hand, an inflammation-associated 

protein, ENO1, was down-regulated in 
COVID-19-children against COVID-19-adults, 
indicating that anti-inflammatory processes were also 
actively triggered in the proteomic level. Also, the 
levels of many negative regulators of inflammation 
and oxidation, such as TRP, IAAld, DHOA, mannitol, 
MMA and UA in COVID-19-children were 
significantly up-regulated compared with those 
COVID-19-adults, supporting the strong antagonistic 
effect. Moreover, our findings showed that these 
metabolites not only relieved the expressions of 
various pro-inflammatory factors, but also exhibited 
an unexpected activity to inhibit MHV replication in 
cells. These results further supported that the immune 
response was strengthened in COVID-19-children, 
and suggested that SARS-CoV-2 replication in 
COVID-19-children was restricted by the enhanced 
levels of COVID-19-associated plasma molecules. 
Thus, we speculated that the immune system of 
COVID-19-children might be in a relatively balanced 
state, in which its activation is stronger than that of 
COVID-19-adults, and is sufficient to restrict 
SARS-CoV-2 infection and the collateral damages.  

Identification of the alternations of plasma 
molecules in COVID-19-children against in healthy 
children or COVID-19-adults also provided 
promising therapeutic agents for COVID-19. Here, we 
tested the effects of MMA, DHOA, TRP and mannitol 
on the expression levels of multiple pro-inflammatory 
cytokines, as well as the viral replication in 
MHV-infected cells. Interestingly, the changes in the 
types of cytokines were different in response to 
distinct metabolite treatments, suggesting that the 
action to mode of these metabolites are dependent on 
different cellular signaling pathways. Moreover, we 
found that MMA or mannitol treatment can efficiently 
inhibit MHV replication. Mannitol is reported to be a 
hydroxyl radical scavenger that plays important roles 
in relieving inflammation [37]. A recent study showed 
that the SARS-CoV-2 infection in monocytes triggers 
mitochondrial reactive oxygen species (ROS) 
production, which induces the stabilization of 
hypoxia-inducible factor-1α (HIF-1α) and 
consequently metabolism reprogramming that 
facilitates the viral replication and inhibits immune 
responses [69]. It is possible that the hydroxyl radical 
scavenging activity of mannitol relieves the cellular 
level of ROS, and in turn suppresses MHV replication. 
For MMA, its exact role in regulation of immune 
response or inflammation is not clear. It was showed 
that MMA treatment in A549 cells triggered the 
induction of SOX4 [38]. Interestingly, a recent study 
found that SOX4 could suppress hepatitis B virus 
replication via inhibiting hepatocyte nuclear factor 4α 
(HNF4α) [70]. Moreover, our findings showed that 



Theranostics 2021, Vol. 11, Issue 16 
 

 
http://www.thno.org 

8019 

IAAld and uric acid (UA) were also significantly 
up-regulated in COVID-19-children compared with 
those in COVID-19-adults. However, there are many 
gaps in their relationships with viral replication and 
inflammation. The detailed roles of the identified 
metabolites specifically altered in COVID-19-children 
need to be further investigated, and the clinical usage 
of these therapeutic metabolites remains to be tested.  

Limitations of the study 
There are a number of limitations in our study. 

First, the plasma samples of COVID-19-children were 
collected at the early stage of the COVID-19 outbreak 
in China. At that time, the number of hospitalized 
COVID-19-children was limited. Thus, the sample 
size in this study was relatively small. Another 
possible drawback of this work is that the intrinsic 
differences between children and adults might not be 
fully excluded, although we used NAVs of proteins 
and metabolites for the comparison of 
COVID-19-children and COVID-19-adults, after 
normalization using the multi-omic data of healthy 
children and healthy adults, respectively. Third, two 
optimal biomolecular combinations were 
computationally prioritized by iBM, in which total 
RMSE values were calculated to estimate and reduce 
the prediction bias. However, over-fitting might not 
be fully avoided for the finally determined models. 
Moreover, it was demonstrated that proteomics-based 
findings were highly variable across different studies 
[54, 58, 59]. Many factors, such as the cohorts enrolled 
from different countries or regions, the differences in 
age, sex, body mass index (BMI), physical conditions 
and other characteristics of the enrolled patients, 
including different MOI stages, different procedures 
of sample preparation and different types of data 
analysis platforms, might considerably influence the 
final results [71]. Thus, although experiments were 
conducted to validate the omics-based predictions in 
this study, we anticipated that the enrollment of more 
plasma samples of COVID-19-children, probably from 
multiple centers, would be helpful to further validate 
our findings. Finally, the roles of more proteins and 
metabolites specifically altered in COVID-19-children 
need to be further investigated, and whether the 
prioritized metabolites could be taken as clinically 
therapeutic agents also remained to be dissected.  

In summary, our findings provided a highly 
valuable multi-omic data resource for the research 
community to better understand COVID-19- 
associated host responses. We identified a number of 
proteins or metabolites specifically altered in 
COVID-19-children, shed lights on the pathogenesis 
of COVID-19 in children, and provided potential 
therapeutic agents for treatment of the disease. 

Materials and Methods 
Ethics and Human Subjects 

All work performed in this study was approved 
by the Guangzhou Women and Children's Medical 
Center Ethics Committee. Written informed consent 
was waived by the Ethics Commission of the 
designated hospital for emerging infectious diseases. 
Diagnosis of SARS-CoV-2 infection was based on the 
New Coronavirus Pneumonia Prevention and Control 
Program (6th edition) published by the National 
Health Commission of China [25]. Nasopharyngeal 
swabs were collected upon admission and then every 
1-3 d throughout the hospitalization period. 
SARS-CoV-2 was tested through real-time RT-PCR of 
2019-nCoVRNA as previously reported [6, 72]. 
Healthy children were recruited at Guangzhou 
Women and Children's Medical Center. The throat 
swab tests and serological tests of healthy children 
were negative for SARS-CoV-2. All blood samples 
were collected after fasting overnight, and then added 
with ethylene diamine tetraacetic acid (EDTA) plus 
potassium (K+). All the blood samples were treated 
according to the biocontainment procedures of the 
processing of SARS-CoV-2-positive samples. 

Preparation of protein and peptide samples 
For each serum sample, the cellular debris was 

removed by centrifugation at 12,000 g at 4 °C for 10 
min. Then, the supernatant was transferred to new 
centrifuge tubes. The top 12 high abundance proteins 
were removed by Pierce™ Top 12 Abundant Protein 
Depletion Spin Columns Kit (Thermo Fisher). Finally, 
the protein concentration was determined with BCA 
kit (Beyotime Biotechnology) according to the 
manufacturer’s instructions. 

For digestion, the protein solution was reduced 
with 5 mM dithiothreitol (Sigma-Aldrich) for 30 min 
at 56 °C and alkylated with 11 mM iodoacetamide 
(Sigma-Aldrich) for 15 min at room temperature in 
darkness. The protein sample was made using buffer 
exchange by 8 M urea (Sigma-Aldrich) three times, 
and then using buffer exchange by the label buffer 
three times. Finally, trypsin (Promega) was added at 
1:50 trypsin-to-protein mass ratio for the digestion 
overnight at 37 °C. The peptides were recovered by 
centrifugation at 12,000 g at room temperature for 10 
min, and the recovery step was repeated by H2O. 

For TMT labeling, the 30 samples were equally 
divided into two groups according to the comparison 
design and processed according to the manufacturer’s 
protocol for TMTproTM 16plex Label Reagent (Thermo 
Fisher) kit (Table S1). For each batch, a pooling 
mixture of all the 30 plasma samples was included 
and labeled as a standard control to eliminate the 
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batch effect. Then, one unit of TMTpro reagent 
(defined as the amount of reagent required to label 
100 μg of proteins) were thawed and reconstituted in 
10 μL acetonitrile (ACN, Thermo Fisher). The peptide 
mixtures were then incubated for 2 h at room 
temperature and pooled, desalted and dried by 
vacuum centrifugation. The labeling efficiency 
(calculated from the ratio of number of TMT labeled 
sites divided by number of all the potential labeling 
sites) had to pass the threshold of 95% before 
proceeding to the fractionation step. 

The sample was then fractionated into fractions 
by high pH reverse-phase high-performance liquid 
chromatography (HPLC) using Agilent 300Extend 
C18 column (5 μm particles, 4.6 mm ID, 250 mm 
length). Briefly, peptides were first separated with a 
gradient of 2% to 32% ACN in 10 mM ammonium 
bicarbonate pH 10 over 60 min into 60 fractions [73]. 
Then, the peptides were combined into 6 fractions and 
dried by vacuum centrifuging. 

LC-MS/MS-based proteomic analysis 
LC-MS/MS data acquisition was carried out on 

an Exploris 480 mass spectrometer coupled with an 
Easy-nLC 1200 system (both Thermo Scientific) [55, 
74]. Peptides were loaded onto a home-made 
reversed-phase analytical column (100 μm × 250 mm, 
1.9 μm particle size, 120 Å pore size, Dr. Maish 
GmbH, Germany), and then separated. Mobile phase 
A (2% ACN, 0.1% formic acid [FA]) and mobile phase 
B (90% ACN, 0.1% FA) were used to establish a 60 min 
separation gradient (0 min – 7% B; 4 min – 11% B; 53 
min – 32% B; 57 min – 80% B; 60 min – 80% B). A 
constant flow rate was set at 500 nL/min. For the 
analysis in data-dependent acquisition (DDA) mode, 
each scan cycle consisted of one full-scan mass 
spectrum (R = 60 K, AGC = 100%, max IT = 50 ms, 
scan range = 400–1200 m/z) followed by 25 MS/MS 
events (R = 45 K, AGC = 100%, max IT = Auto). High 
energy collision dissociation (HCD) collision energy 
was set to 35. Isolation window for precursor selection 
was set to 1.6 Da. Former target ion exclusion was set 
for 30 s. 

Protein database search 
MS/MS raw data were analyzed with Proteome 

Discoverer (v2.4.1.15) using the Andromeda database 
search algorithm (Thermo Fisher). The reference 
database contained 20,380 Swiss-Prot/reviewed 
human protein sequences downloaded from the 
UniProt database 
(https://www.uniprot.org/proteomes/UP000005640
, on November 15, 2019), and reverse decoy sequences 
were generated. Then, spectra files were searched 
against the merged database using the following 

parameters: Type, TMT; Variable modifications, 
Oxidation (M), Acetyl (Protein N-term); Fixed 
modifications, Carbamidomethyl (C), TMTpro 
(peptide N-Terminus), TMTpro (K); Digestion, 
Trypsin (Full). The MS1 match tolerance was set as 10 
parts per million (ppm); the MS2 tolerance was set as 
0.02 Da. Search results were filtered with 1% false 
discovery rate (FDR) at both protein and peptide 
levels. Proteins denoted as decoy hits, or only 
identified by sites were removed, and the remaining 
proteins were used for further analysis.  

Extraction of hydrophilic and hydrophobic 
metabolites 

To extract hydrophilic compounds, each sample 
was thawed on ice. Then, 6 volumes of ice-cold 
methanol (Merck) was added to 1 volume of plasma. 
The mixture was whirled for 3 min and then 
centrifuged at 12,000 g at 4 °C for 5 min. The 
supernatant was collected and stored at – 20 °C. After 
30 min, the sample was centrifuged at 12000 g at 4 °C 
for 3 min, and the supernatant was collected and 
subjected to LC-MS/MS analysis. 

To extract hydrophobic compounds, each 
sample was thawed on ice, whirled around 10 s, and 
then centrifuged with 3000 g at 4 °C for 5 min. Then, 
250 μL methanol, 750 μL methyl tertiary-butyl ether 
(MTBE, Merck), and 13 internal standard mixtures 
(Sigma-Aldrich) were added to 50 μL of one sample. 
The mixture was homogenized and whirled for 2 min, 
added with 200 μL of water, whirled for 1 min, and 
then centrifuged with 12,000 g at 4 °C for 10 min. The 
200 μL supernatant was extracted and concentrated. 
The powder was re-dissolved with 200 μL mobile 
phase B (90% ACN, 0.1% FA), and then and subjected 
to LC-MS/MS analysis. 

LC analysis of hydrophilic and hydrophobic 
compounds 

For quality control of the metabolomic analysis, 
we pipetted 10 μL of each of the 30 plasma samples to 
pool a mixture, which was equally separated into 4 
parts. When running sample sets on the UPLC 
column, 1 part of the control sample was first added, 
and the remaining 3 parts were sequentially injected 
after per 10 samples.  

The sample extracts of hydrophilic compounds 
were analyzed using the ultra-performance liquid 
chromatography (UPLC) of a LC-MS/MS system 
(Shim-pack UFLC SHIMADZU CBM A system, MS, 
QTRAP® 6500+ System). The samples were injected 
onto a Waters HSS T3 column (1.8 µm, 2.1 mm × 100 
mm). The column temperature, flow rate and injection 
volume were set 40 °C, 0.4 mL/min and 2 μL, 
respectively. Mobile phase A (2% ACN, 0.1% FA) and 
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mobile phase B (90% ACN, 0.1% FA) were used to 
establish a 12 min separation gradient (0 min – 5% B; 
11 min – 90% B; 12 min – 5% B). 

The sample extracts of hydrophobic compounds 
were also analyzed using the same UPLC (Shim-pack 
UFLC SHIMADZU CBM A system, MS, QTRAP® 
6500+ System). The samples were injected onto a 
Thermo Accucore™ C30 column (2.6 μm, 2.1 mm × 100 
mm). The column temperature, flow rate and injection 
volume were set 45 °C, 0.35 mL/min and 2 μL, 
respectively. Mobile phase A (2% ACN, 0.1% FA) and 
mobile phase B (90% ACN, 0.1% FA) were used to 
establish a 20 min separation gradient (0 min – 20% B; 
2 min – 30% B; 4 min – 60% B; 9 min – 85% B; 14 min – 
90% B; 15.5 min – 95% B; 17.3 min – 90% B; 20 min – 
20% B).  

MS/MS-based analysis of hydrophilic and 
hydrophobic compounds 

Triple quadrupole (QQQ) scans with linear ion 
trap (LIT) were acquired using the LC-MS/MS system 
(Shim-pack UFLC SHIMADZU CBM A system, MS, 
QTRAP® 6500+ System). This system was equipped 
with an electrospray ionization (ESI) Turbo Ion-Spray 
interface, which could be operated in positive and 
negative ion modes and controlled by Analyst 1.6.3 
software package (Sciex). The parameters of the ESI 
source operation were set as: ion source, turbo spray; 
source temperature, 550 °C; ion spray voltage, 5500 V 
in the positive ion mode or -4500 V in the negative ion 
mode; collision gas, 5 psi; ion source gas I, 45 psi; ion 
source gas II, 55 psi; curtain gas, 35 psi. The 
quantification of metabolites was accomplished using 
targeted multiple reaction monitoring (MRM) 
approach [75]. Instrument tuning and mass 
calibration were performed with 10 and 100 μM 
polypropylene glycol solutions in QQQ and LIT 
modes, respectively. Declustering potential and 
collision energy for individual MRM transitions was 
done with a further optimization. A specific set of 
MRM transitions were monitored for each period 
according to the metabolites within this period. The 
analysis of each sample was conducted by both 
positive and negative ion modes, and the MRM 
transitions were listed in Table S17.  

Data analysis of plasma hydrophilic and 
hydrophobic metabolites  

The MS/MS data were processed by Analyst 
1.6.3 software package (Sciex). The reproducibility of 
metabolite extraction and detection were judged by 
total ion current and multiple peaks of MRM 
quantifications. According to the retention time and 
mass-to-charge ratio, the identification of both 
hydrophilic and hydrophobic metabolites was 

performed using a home-made metadata database 
and other existing metabolomic databases, including 
MassBank (http://www.massbank.jp/) [76], 
KNApSAcK (http://www.knapsackfamily.com) [77], 
HMDB (http://www.hmdb.ca/) [78], and METLIN 
(http://metlin.scripps.edu/index.php) [79] (Table 
S3). 

For quantification of plasma metabolites, the 
metabolomic data was analyzed using MultiQuant 
software package 3.0.2 (Sciex), which automatically 
integrated and calibrated the chromatographic peaks. 
The IBA of each metabolite was calculated by the peak 
area of each chromatographic peak. To ensure the 
data quality, we calculated coefficient of variation 
(CV) values of all metabolites, and removed 
low-quality hits whose CV values were larger than 
0.5.  

Reuse of the proteomic and metabolomic data 
of adults 

Previously, we prepared two cohorts for the 
plasma proteomic profiling of COVID-19-adults and 
healthy adults [23, 24]. The first cohort contained 5 
patients with fatal outcome, 7 patients diagnosed as 
severe symptoms, 10 patients diagnosed as mild 
symptoms, and 8 healthy volunteers. The second 
cohort contained 9 patients with fatal outcome, 6 
patients diagnosed as severe symptoms, 6 patients 
diagnosed as mild symptoms, and 5 healthy 
volunteers. For patients with multiple blood samples 
taken at different time points, only the sample 
collected at the first time after hospitalization was 
considered in this study. In total, the proteomic data 
set was derived from 56 plasma samples of 43 
COVID-19-adults and 13 healthy adults.  

For the metabolomic profiling, the cohort 
contained 34 COVID-19-adults including 9 patients 
with fatal outcome, 11 patients diagnosed as severe 
symptoms, and 14 patients diagnosed as mild 
symptoms, as well as 10 healthy volunteers [23, 24]. 
Again, for patients with multiple samples taken at 
different time points, only the sample collected at the 
first time after hospitalization was considered. 

Data normalization and imputation 
For each batch of the plasma proteomic data, the 

IBA of a protein in one sample was first normalized 
using its corresponding expression in the control of 
the same batch to calculate the RPA, which eliminated 
the batch effect prior to the comparative analysis of 
the samples of COVID-19-children and healthy 
children.  

To identify molecular alterations exclusively in 
COVID-19-children CC but not healthy children HC or 
COVID-19-adults AC samples, the mean RPA value of 
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a protein i in HC or healthy adults HA was first 
calculated as below: 

𝑅𝑃𝐴������ (𝐻𝐶)𝑖 =
∑ 𝑅𝑃𝐴 (𝐻𝐶)𝑗𝑁
𝑗=1

𝑁
 

𝑅𝑃𝐴������ (𝐻𝐴)𝑖 =
∑ 𝑅𝑃𝐴 (𝐻𝐴)𝑗𝑀
𝑗=1

𝑀
 

Where N and M denoted the numbers of HC and 
HA cases, respectively. Then, the NAV of the protein i 
in CC or AC samples was calculated as below: 

𝑁𝐴𝑉 (𝐶𝐶)𝑖 =
𝑅𝑃𝐴 (𝐶𝐶)𝑖
𝑅𝑃𝐴������ (𝐻𝐶)𝑖

 

𝑁𝐴𝑉 (𝐴𝐶)𝑖 =
𝑅𝑃𝐴 (𝐴𝐶)𝑖
𝑅𝑃𝐴������ (𝐻𝐴)𝑖

 

Analogously, the NAVs of all metabolites in each 
CC or AC sample were also computed. 

To ensure the data quality for identification of 
potential DEPs or DEMs, we only reserved proteins or 
metabolites quantified in > 80% samples (575 proteins 
or 1155 metabolites in > 24 samples for the multi-omic 
analysis of COVID-19-children vs. healthy children, 
332 proteins in > 68 samples for the proteomic 
analysis of COVID-19-children vs. COVID-19-adults, 
and 783 metabolites in > 59 samples for the 
metabolomic analysis of COVID-19-children vs. 
COVID-19-adults). Using the normal distribution 
imputation, the missing values were imputed with 
values representing a normal distribution around the 
detection limit of the mass spectrometer. For each 
sample, the mean and standard deviation (S.D.) of the 
distribution of the raw protein or metabolite 
intensities were calculated. Then a new distribution 
with a downshift of 1.8 S.D. and a width of 0.3 S.D. 
was automatically modeled. The total data set was 
imputed before statistical analysis. After imputation, 
the mean μ and S.D σ were counted for each protein or 
metabolite in COVID-19-children and healthy 
children, respectively, and CV was calculated as 
below: 

CV =
𝜎
𝜇

 

Before model training, the proteomic or 
metabolomic data of each sample was further 
normalized using the z-score transformation, one of 
the mostly used normalization methods. For each 
sample, the median expression value m and S.D. δ 
were first calculated for the proteomic or metabolomic 
data. For a protein or metabolite i with the abundance 
of NAVi, its normalized z-score was calculated as 
below: 

𝑧𝑖 =
𝑁𝐴𝑉𝑖 − 𝑚

𝛿
 

After transformation, the z-scores of proteins or 
metabolites followed a logarithmic normal 
distribution (log2) centered at zero. 

The proteomic and metabolomic data 
normalization and imputation were conducted using 
Perseus 1.6.14 [80]. To test whether different types of 
patients could be distinguished, PCA was performed 
using Scikit-learn 0.22.1 (https://scikit-learn.org/ 
stable/), a useful toolkit for data mining and analysis. 
The Pearson correlation analysis was performed by an 
R packge, corrplot (https://cran.r-project.org/web/ 
packages/corrplot/index.html). 

Statistical analysis of the quantitative omic 
data 

Using RPA values of the proteomic data and IBA 
values of the metabolomic data, we identified 
potential DEPs and DEMs that were significantly 
altered in COVID-19-children against healthy 
children. Then, using NAVs of the omic data, we 
further identified potential DEPs and DEMs that were 
significantly altered in COVID-19-children against 
COVID-19-adults. The FC value was calculated based 
on the mean of the same patient group for each pair of 
groups, and proteins or metabolites with |log2(FC)| > 
0.25 were reserved. The statistical significance was 
calculated for reserved proteins and metabolites, 
using the unpaired two-sided Welch’s t-test and 
adjusted P values were calculated using Benjamini & 
Hochberg correction (Adjusted P < 0.05). The 
statistical analyses were conducted using the ttest_ind 
function in scipy.stats.  

The enrichment analysis 
The two-sided hypergeometric test was adopted 

for the GO- or KEGG-based enrichment analysis of 
the DEPs or DEMs. Here, we defined: 

N = number of human proteins or metabolites 
annotated by at least one term 

n = number of human proteins or metabolites 
annotated by term t 

M = number of the DEPs or DEMs annotated by 
at least one term  

m = number of the DEPs or DEMs annotated by 
term t 

Then, the E-ratio was calculated, and the P value 
was computed with the hypergeometric distribution 
as below: 

E-ratio = 
𝑚
𝑀
𝑛
𝑁

 

P value = ∑
( 𝑀𝑚′)(𝑁−𝑀𝑛−𝑚′)

(𝑁𝑛)
𝑛
𝑚′=𝑚 , (E-ratio > 1) 

In this study, adjusted P values were calculated 
using Benjamini & Hochberg correction and only 
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statistically over-represented GO terms for the 
proteomic data and KEGG pathways for the 
metabolomic data were considered. GO annotation 
files (released on 03 January 2020) were downloaded 
from the Gene Ontology Consortium Web site 
(http://www.geneontology.org/), and in total we 
obtained 19,288 human proteins annotated with at 
least one GO biological process term. KEGG 
annotation files (released on 4 September 2020) were 
downloaded from the ftp server of KEGG 
(ftp://ftp.bioinformatics.jp/), which contained 6,182 
metabolites annotated with at least one KEGG 
pathway term. Proteins have both GO and KEGG 
annotations, whereas GO annotations were more 
integrative. Metabolites only have KEGG annotations. 
Thus, GO- and KEGG-based enrichment analyses 
were separately conducted for DEPs and DEMs. 

Performance evaluation 
To evaluate the accuracy of iBM, the numbers of 

true positive (TP), true negative (TN), false positive 
(FP) and false negative (FN) hits were counted. Then, 
we calculated two measurements, including 
sensitivity (Sn), specificity (Sp) as below: 

 𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The 5-fold cross-validation was performed, 
while Sn and Sp values were calculated, respectively. 
The receiver operating characteristic (ROC) curve was 
illustrated and AUC value was calculated based on Sn 
and 1-Sp scores.  

To estimate the prediction bias of a model, the 
root mean squared error (RMSE), an important 
measure of the residuals between predicted values 
and observed values, was calculated as below:  

RMSE = �
1
𝑛
�(𝑂𝑖−𝑃𝑖)2
𝑛

𝑖=1

 

Where n represented the number of plasma 
samples in the data set. Pi denoted the predicted 
probability value ranged from 0 to 1, while Oi was 
equal to 0 for non-COVID-19 cases and 1 for 
COVID-19 cases, respectively.  

Inference of optimal biomolecular 
combinations 

We separately identified the optimal combina-
tion exclusively altered in COVID-19-children with a 
minimal RMSE for the proteomic and metabolomic 
data, by developing a three-step pipeline named iBM 
that included MDS, CCG, and FCP.  

In the step of MDS, mutually identified DEPs or 
DEMs in COVID-19-children against healthy children 
and COVID-19-children against COVID-19-adults 
were reserved as a candidate pool. Then, CCG was 
adopted to select different sets of combinations with ≤ 
5 proteins or metabolites. This number was much 
smaller than the sample size and could efficiently 
avoid over-fitting. From the pool, 10,000 candidate 
combinations were randomly generated for the 
proteomic and metabolomic data, respectively. The 
initial weight value of each protein or metabolite was 
set to 1.  

In the step of FCP, the 5-fold cross-validation 
was conducted for model training. For each candidate 
combination, we randomly generated a training data 
set and a testing data set with a ratio of approximately 
4:1. The testing data set was only used to test the 
performance but not for training, and the final total 
AUC value was calculated as below: 

Total AUC = �AUCCC 𝑣𝑠.HC ∗ AUCCC 𝑣𝑠.AC 

The least absolute shrinkage and selection 
operator (LASSO, L1 regularization) penalty and the 
ridge regression (L2 regularization) penalty in PLR 
[26-28], were iteratively used to optimize the weight 
values of the 5 proteins or metabolites. To simplify the 
combination, one or multiple proteins or metabolites 
were randomly dropped if the total AUC value of the 
5-fold cross-validation was increased. Such a 
procedure was repeatedly performed until the AUC 
value was not increased any longer. All combinations 
with a total AUC equal to 1 were reserved for the 
proteomic and metabolomic data, respectively (Table 
S12-S13). The total RMSE value of all samples was 
calculated for each combination, and the final result 
was determined based on the minimal total RMSE 
value.  

The PLR algorithm was implemented in Python 
3.7 with Scikit-learn 0.22.1. The source code of iBM is 
available at: https://github.com/Ning-310/iBM. 

Cell culture and virus infection 
The L2 cell line was kindly provided by Prof. 

Chen (Wuhan University, China) and maintained in 
Dulbecco’s modified Eagle’s medium (DMEM, Gibco) 
supplemented with 10% fetal bovine serum (Gibco), 
100 U/mL penicillin and 100 μg/mL streptomycin at 
37 °C in a humidified atmosphere with 5% CO2. The 
MHV strain A59 was kindly provided by Prof. Chen 
(Wuhan University, China).  

MMA (STBF5304V), DHOA (SLCD3296) and 
mannitol (WXBD1141V) were commercially 
purchased from Sigma-Aldrich. TRP (10211562) was 
commercially purchased from Alfa Aesar. The CCK-8 
assay was used to evaluate the cytotoxicity of MMA, 
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DHOA, TRP and mannitol in L2 cells. Briefly, the cells 
were seeded into 96-well plates and incubated with 
increased concentrations from 0 μM to 1280 μM. After 
incubation at 37 °C for 12 h, the cell supernatant was 
replaced with fresh DMEM. Then, after incubation for 
additional 12 h, the CCK-8 solution was added for 
detection of the absorbance at 450 nm using a 
microplate reader (Infinite M200PRO). The CCK-8 kit 
was purchased from Dojindo. 

For detection of the effects of MMA, DHOA, TRP 
and mannitol upon MHV infection, each one of the 
tested compounds at the concentration of 5 or 10 μM 
was added to L2 cells (4×105 cells in each of the 12 
wells in a cell culture-treated plate). After 1 h 
incubation, L2 cells were infected with MHV at MOI = 
0.1. At 12 h post-infection, the infected L2 cells were 
collected and total cellular RNAs were extracted using 
Total RNA kit (Foregene). The viral RNA 
accumulation and the mRNA levels of IL-6, IL-1β, 
TNF-α, TGF-β and IL-10 were determined via 
qRT-PCR.  

The qRT-PCR was performed with the primers 
specific for F9, F11, FGA, FGG, ENO1, IL-6, IL-1β, 
TNF-α, TGF-β and IL-10. The qRT-PCR was 
performed using One Step SYBR® PrimeScript™ 
PLUS RT-PCR Kit (Yeasen). All the primers used here 
were listed in Table S15. 

Supplementary Material  
Supplementary figures. 
http://www.thno.org/v11p8008s1.pdf  
Supplementary tables. 
http://www.thno.org/v11p8008s2.xlsx  
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