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Abstract: Phosphorylation is one of the most essential post-translational modifications (PTMs) of proteins, regulates a va-

riety of cellular signaling pathways, and at least partially determines the biological diversity. Recent progresses in phos-

phoproteomics have identified more than 100,000 phosphorylation sites, while this number will easily exceed one million 

in the next decade. In this regard, how to extract useful information from flood of phosphoproteomics data has emerged as 

a great challenge. In this review, we summarized the leading edges on computational analysis of phosphoproteomics, in-

cluding discovery of phosphorylation motifs from phosphoproteomics data, systematic modeling of phosphorylation net-

work, analysis of genetic variation that influences phosphorylation, and phosphorylation evolution. Based on existed 

knowledge, we also raised several perspectives for further studies. We believe that integration of experimental and com-

putational analyses will propel the phosphoproteomics research into a new phase. 

Keywords: Post-translational modification, phosphorylation, phosphorylation motif, phosphorylation network, phosGV, phos-
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INTRODUCTION 

 As one of the most important post-translational modifica-
tions (PTMs), phosphorylation temporally and spatially 
modifies thousands of protein substrates at specific amino 
acid residues, and determines cellular dynamics and plastic-
ity [1-4]. Although there are only 518 protein kinases (PKs) 
encoded by ~2% of all human genes, ~30% of all proteins 
can be phosphorylated in vivo at any given time [5]. By 
chromosomal mapping, it was estimated that aberrances of 
~50% of human PKs are highly implicated in diseases and 
cancers [6]. In this regard, elucidation of phosphorylation 
regulatory roles is fundamental for understanding molecular 
mechanisms of diseases and cancers, and further biomedical 
design. Indeed, PKs were regarded to comprise ~20% of all 
potential drug targets [5].  

 Conventionally, experimental identification of phos-
phorylated substrates with their sites followed a “one-by-
one” strategy. These experiments were usually labor-
intensive, time-consuming, and often hampered by the avail-
ability and optimization of enzymatic reactions. Before mil-
lennium, there were only ~1,000 phosphorylation sites ex-
perimentally detected in ~400 proteins [7]. During the last 
decade, experimental techniques have been greatly improved 
into a state-of-the-art level [8-11]. For example, combined 
with phosphopeptide enrichment methods and high-
throughput mass spectrometry (HTP-MS), accurate identifi- 
 

*Address correspondence to this author at the Department of Systems Biol-

ogy, College of Life Science and Technology, Huazhong University of 

Science and Technology, Wuhan, Hubei 430074, China; Tel: +86-27-8779-
3903; Fax: +86-27-87793172; E-mail: xueyu@mail.hust.edu.cn 

cation of several thousands of phosphorylation sites in a sin-
gle experiment has become a near-routine assay [12-15]. To 
date, more than 100,000 phosphorylation sites have been 
verified from various large-scale and small-scale studies, 
with a >100-fold enhancement [16].  

 In contrast with ‘wet’ experimental methods, computa-
tional analysis of phosphorylation in a dry lab has also been 
an alternative and popular approach [17]. Besides known 
data integration and database construction, numerous tools 
were developed mainly for prediction of phosphorylation 
sites. In our recent review article, we gave a brief but com-
prehensive summarization of more than 50 public databases 
and predictors of protein phosphorylation [17]. Previously, 
since the number of experimental phosphorylation sites was 
limited, general prediction of non-specific or organism-
specific phosphorylation sites is useful for further verifica-
tion. When more and more sites especially kinase-specific 
sites were accumulated, prediction of kinase-specific phos-
phorylation sites from given protein sequences has become a 
hot topic [17]. To date, more than 20 kinase-specific predic-
tors have been released [17].  

 Due to rapid progress of experimental techniques, we 
anticipate that more and more phosphorylation sites will be 
continuously detected in the next decade. Moderately, the 
number of experimental identified phosphorylation sites will 
exceed 1,000,000 at the end of 2020, if only a small 10-fold 
effort is carried out. In this regard, ab initio prediction of 
phosphorylation sites will be less important in the near fu-
ture, while a key challenge is how to extract useful informa-
tion from phosphoproteomics data. To address this problem, 
a number of researchers have already made pioneering con-
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tributions, although far from mature. In this article, we re-
viewed the cutting-edge progresses in computational analysis 
and mining of phosphoproteomics data. All resources includ-
ing related databases and tools are presented Table 1. For 
more detailed information on phosphorylation regulatory 
roles, mechanisms, specificity, and other related computa-
tional or experimental progresses, we recommend several 
excellent reviews [1-4, 6, 18-29].  

DISCOVERY OF PHOSPHORYLATION MOTIFS 

FROM PHOSPHOPROTEOMICS DATA 

 The phosphorylation motifs can be classified into two 
main categories [30]. The first class is phosphorylation-
based substrate motifs (PSMs), which are specifically recog-
nized by PKs or phosphatases [17, 30]. The second group 
comprises phosphorylation-based binding motifs (PBMs), 
which motifs around S/T/Y residues by phosphorylation can 
generate docking sites recognized by phospho-binding do-
mains (PBDs) to mediate protein-protein interactions (PPIs) 
[27-29, 31-33] Fig. (1).  

 In 1996, Songyang et al. developed an in vitro assay to 
determine sequence specificities of protein Ser/Thr kinases 
from oriented degenerate peptide libraries [34]. Later, with 
the similar method, Nishikawa et al. experimentally deter-
mined optimal PSMs for nine PKC isozymes [35]. To date, 
hundreds of kinase PSMs were experimentally defined in 
vitro [30, 36-38]. When more and more in vivo phosphopro-
teomics data is available, a major challenge is how to extract 
in vivo PSMs from the noisy mixture, since in vitro PSMs 
might be not correct or functional in vivo. In 2004, Beau-
soleil et al. firstly identified 2,002 in vivo phosphorylation 
sites in 967 substrates from human HeLa cell nucleus with 
strong cation exchange (SCX) chromatography and tandem 
MS [13]. By computational statistics, they observed that 
59.8% (1,096) of all sites are proline-directed sites to follow 
a pS/pT-P motif, which can be specifically recognized by 
mitogen-activated protein kinases (MAPKs) or cyclin-
dependent kinases (CDKs). They also found PSMs for baso-
philic (PKA, PKC, and Slk1, etc.) and acidiphilic (casein 
kinase I, and casein kinase II) PKs [13]. Later, they devel-
oped a two-step iterative statistical algorithm of Motif-X 
Table 1, including recursive motif finding and set reduction, 
to predict potential kinase-specific PSMs from large-scale 
data sets [39] Fig. (2). They successfully discovered many 
novel phosphorylation motifs as well as known PSMs [39]. 
From mouse liver phosphoproteomics data including 5,635 
phosphorylation sites from 2,328 substrates, they used the 
Motif-X software to discover a novel “dipolar” motif of 
RxxpSxx[DE], which might be modified by both basophilic 
and acidiphilic PKs [14]. Again, this method was extensively 
adopted in analyses of phosphoproteomics data in budding 
yeast [40], fission yeast [41] and fruit fly [42]. In particular, 
they determined an S/T-Q motif from more than 700 
ATM/ATR specific substrates, which are regulated in DNA 
damage response (DDR) [43]. By network module analysis, 
they also modeled potential AKT-insulin pathway in the 
DDR [43]. In addition, the discovered PSMs can be used for 
further prediction of phosphorylation sites [44]. Recently, 
Ritz et al. also developed a similar approach of Motif De-
scription Length (MoDL) algorithm for PSMs discovery [45] 
Table 1.  

 In contrast with PSM, computational extraction of PBMs 
from mixture data is more difficult and still remains to be 
carried out. Although a large number of known PBD-
mediating interactions were collected for ten PBD classes 
including 14-3-3, BRCT, C2, FHA, MH2, PBD, PTB, SH2, 
WD40 and WW [46], few computational studies were per-
formed for systematic prediction of phospho-binding sites 
[47-50], while the number of experimental identified PBMs 
is quite limited [30]. In 2004, from phosphoproteomics data 
including over 500 phosphorylation sites in the developing 
mouse brain, Ballif et al. identified two PBMs of RXXpSXP 
and RXXXpSXP, which might interact with 14-3-3 proteins 
[51]. Later, they detected 163 14-3-3  binding proteins with 
85 phosphorylation sites from embryonic mouse brain, and 
verified phosphorylation of the deubiquitinating enzyme 
USP8 S680 is essential for 14-3-3  interaction [52]. With a 
motif decomposition approach, Miller et al. computationally 
and experimentally identified a novel hydrophobic PBM of 
L/V/I--L/V/I-pY for the SH2 domain-containing inositol 
phosphatase SHIP2 from 481 SH2 binding phosphotyrosine 
peptides [53]. 

SYSTEMATIC MODELING OF PHOSPHORYLA-
TION NETWORK 

 Systematic elucidation kinase-substrate relation (KSR) 
and reconstruction of phosphorylation network are helpful 
for understanding phosphorylation regulatory roles in a sys-
tem level [23, 54-57]. It was believed that PSMs provide 
major specificities for PK recognition [21, 24], while a vari-
ety of contextual factors, including co-localization, co-
expression, co-complex, or physical interaction of PKs with 
their targets, contribute additional specificities in vivo [25, 
26, 57] Fig. (3A). In this regard, accurate prediction of site-
specific kinase-substrate relation (ssKSR) is fundamental for 
constructing phosphorylation network Fig. (3B).  

 In 2001, Yaffe et al. developed a motif-based software of 
Scansite for genome-wide prediction of kinase-specific 
phosphorylation or phospho-binding substrates with their 
sites in common cellular signaling pathways [50] Table 1. 
Later, similar simple linear motif (SLM)-based strategies 
were used to predict ssKSRs in budding yeast [58, 59]. Pre-
viously, we also constructed a kinase-specific predictor of 
GPS 2.0, which can predict phosphorylation sites for 408 
human PKs [60] Table 1. With this software, we directly 
carried out a large-scale prediction of ssKSRs for more than 
13,000 unannotated phosphorylation sites [60]. Recently, 
Xiao et al. Identified 4,552 phosphopeptides in 1,555 sub-
strates from HEK293 cells, and determined 171 proteins 
(222 phosphopeptides) and 53 (66 phosphopeptides) to be 
increased and decreased phosphorylated upon -arrestin–
biased ligand Sar, Ile, Ile-angiotensin (SII) stimulation of the 
angiotensin II type 1A receptor (AT1aR) [61]. With Motif-X 
and kinase enrichment analysis (KEA) [62] tools Table 1, 
they directly constructed a phosphorylation network for ana-
lyzing -arrestin–mediated AT1aR signaling process [61]. In 
above analysis, a major limitation is that only PSM profiles 
were considered.  

 To achieve a higher accuracy and reduce false positive 
hits, the contextual filters should be introduced. In 2007, 
Linding et al. reported a novel integrative algorithm of Net-
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Table 1. All Databases and Tools Mentioned in this Review 

Resources Web Links Main Propose Ref. 

Discovery of phosphorylation motifs from phosphoproteomics data  

Motif-X  motif-x.med.harvard.edu Ab initio discovery of PSMs [39] 

MoDL cs.brown.edu/people/braphael/software.html Ab initio discovery of PSMs [45] 

SMALI  lilab.uwo.ca/SMALI.htm Prediction of PBMs recognized by SH2 domain [47, 49] 

Systematic modeling of phosphorylation network  

NetworKIN networkin.info Prediction of in vivo ssKSRs [63, 66] 

SubExtractor  www.kinaxo.de/SubExtractor Identification of differentially regulated phosphorylation 

subnetworks 

[82] 

Analysis of genetic variation that influences phosphorylation 

PhosSNP  phossnp.biocuckoo.org A database containing predicted SNPs that changes phos-

phorylation state 

[86] 

Other related useful databases 

SysPTM www.biosino.org.cn/SysPTM Contains known phosphorylation sites [16] 

PepCyber: P~Pep  www.pepcyber.org/PPEP Contains known phospho-binding interactions [46] 

NetPath  www.netpath.org Contains10 immune and 10 cancer signaling pathways [70] 

Phospho.ELM  phospho.elm.eu.org Collection of known phosphorylation sites [71, 72] 

PhosphoPOINT  kinase.bioinformatics.tw Contains known phosphorylation sites [76] 

HPRD  www.hprd.org Collection of known PPIs [79] 

STRING string-db.org A known and predicted PPI database [80] 

PHOSIDA  www.phosida.com Collection of known phosphorylation sites [95] 

Other related useful tools 

PhosphoMotif 

Finder 

www.hprd.org/PhosphoMotif_finder Scanning known phosphorylation motifs from given protein 

sequences 

[30] 

Minimotif Miner mnm.engr.uconn.edu/MNM Scanning known phosphorylation motifs [36, 37] 

NetPhorest  netphorest.info Prediction of PSMs or PBMs [38] 

Scan-X  motif-x.med.harvard.edu Scanning motifs identified by Motif-X [44] 

ScanSite  scansite.mit.edu Prediction of PSMs or PBMs [50, 65] 

GPS gps.biocuckoo.org Prediction of PSMs for 408 kinases in human [60] 

KEA  amp.pharm.mssm.edu/lib/kea.jsp Calculation of potential kinases associated with inputted genes/ 

proteins 

[62] 

NetPhosK  www.cbs.dtu.dk/services/NetPhosK Prediction of PSMs [64] 

PhosphoBlast phospho.elm.eu.org/pELMBlastSearch.html A BLAST-like program for searching known phosphorylated 

peptides 

[97] 

 

worKIN for construction of human in vivo phosphorylation 
network (HPN) [63] Table 1. Firstly, all possible PKs for an 
unannotated phosphorylation site were predicted by Net-
PhosK [64] and Scansite [65] Table 1. Then contextual 
scores were computed by calculating most proximal paths 
from all these PKs to the substrate, while PKs with higher 
contextual scores beyond a pre-defined threshold were 

adopted as potential upstream PKs. In NetworKIN 1.0, the 
HPN contained 68 PKs, 1,759 substrates, 4,488 phosphoryla-
tion sites, and 7,143 ssKSRs [63], while the updated version 
contained 73 PKs, 3,978 targets and 20,224 ssKSRs [66]. 
With this powerful software [67, 68], Tan et al. compara-
tively discovered a potentially conserved HPN with 27 PKs 
and 778 substrates, in which the disease-associated genes are
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Fig. (1). The diverse phospho-binding patterns. (A) The phosphotyrosine-binding domain SH2 can recognize special phospho-Tyr for physi-

cal interaction [28, 29]. (B) The last two BRCT tandem repeats in BRCA1 preferentially bind phospho-Ser/Thr in phosphorylated proteins 

[32]. (C) The T550 of Nedd 1 phosphorylated by CDK1 can generate a docking site for Plk1 polo-box domain. Then Plk1 can further phos-

phorylate Nedd1 at up to four sites [33]. (D) A consequential cascade of phospho-binding. Upon EGF stimulus, the EGFR is phosphorylated 

to recruit SHC by interaction between phospho-Tyr and PTB domain. Then phosphorylated SHC can interact with GRB2 SH2 domain to 

activate downstream Ras-MAPK pathway [29].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Discovery of phosphorylation motifs. For example, Villen et al. used a self-developed software of Motif-X [39] to retrieve an Akt 

kinases motif of RXRXXpS from a mouse liver phosphoproteomics data [14].  
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Fig. (3). Systematic modeling of phosphorylation network. (A) In eukaryotes, it was believed that linear motifs around phosphorylation sites 

provide major specificity, while a variety of contextual factors support additional specificity for modification in vivo. (B) A simplified puta-

tive procedure for re-construction of phosphorylation network. The key step is accurate prediction of in vivo ssKSR. The elliptical nodes are 

PKs, while the square nodes are non-kinase substrates. An arrow in a line means that a PK phosphorylates a substrate.  

 

statistically enriched [69]. In 2006, Olsen et al. quantified 
that 14% of 6,600 phosphorylation sites in 2,244 proteins 
from HeLa cells are modulated 2-fold by epidermal 
growth factor (EGF) stimulus [15]. The data was further 
used to construct a phosphorylation dynamics-based network 
and mapped to NetPath [70] and Phospho.ELM [71, 72] da-
tabases Table 1 for signaling pathway analysis [73]. Fur-
thermore, Olsen et al. quantitatively investigated 20,443 
phosphorylation sites in 6,027 proteins from HeLa S3 cell. 
With the NetworKIN [63, 66], they modeled signaling path-
ways that link cell cycle and DNA damage repair processes 
[74]. Recently, Van Hoof et al. determined 3,067 phosphory-
lation sites in 1,399 proteins from human embryonic stem 
cells (hESCs) during differentiation induced by bone 
morphogenetic protein (BMP). With the NetworKIN, they 
modeled kinase cascades and key pathways during early em-
bryonic cell differentiation [75]. Moreover, Miller et al. de-
veloped a SLM-based software of NetPhorest to predict se-
quence motifs for 179 PKs and 104 PBDs [38] Table 1. 
Combined with the NetworKIN, a more integrative phos-
phorylation network among PKs, substrates, and phosphor-
binding proteins can be constructed. 

 In 2008, Yang et al. observed that 85% of all human PKs 
have interacting partners, raising the possibility that PPI in-
formation might be a major contextual filter for revealing 
potential ssKSRs [76]. We also proposed a “kiss farewell” 
model that a PK should at least kiss its substrates by directly 
physical interaction or forming a co-complex for modifica-
tion [77]. Although the kisses might be transient and dy-
namic with different degrees of affinity, a large proportion of 
the interactions can still be detected in standard PPI screen-
ings [77]. Based on this model, we accurately predicted 48 
Aurora-B specific sites in 32 binding substrates from both 

experimental and pre-calculated PPIs [60]. Later, Mayya et 
al. identified 10,665 phosphorylation sites from human Jur-
kat T cell leukemia cell line, and found phosphorylation 
level of 696 of these sites to be changed upon T cell receptor 
(TCR) response [78]. With experimental PPI information 
taken from the Human Protein Reference Database (HPRD) 
[79] Table 1, they directly modeled TCR signaling pathways 
and proposed that phosphorylation plays an essential role in 
regulating protein interaction [78]. Recently, Santamaria et 
al. identified 358 Plk1-specific phosphorylation sites on 
spindle proteins, and used pre-predicted PPI information 
from STRING database [80] Table 1 to construct potentially 
Plk1-centered subnetwork for dissecting the early mitotic 
spindle organization pathway [81]. In addition, Klammer et 
al. developed a novel software of SubExtractor Table 1 to 
combine phosphoproteomics data with pre-predicted PPI 
information from STRING to detect differentially regulated 
subnetworks [82]. 

ANALYSIS OF GENETIC VARIATION THAT IN-
FLUENCES PHOSPHORYLATION 

 Recent progresses in next-generation sequencing (NGS) 
technologies have been powerful to demonstrate genetic 
variations such as germline or somatic mutations in various 
diseases and cancers [83]. It was believed that only a small 
proportion of all mutations in gene coding regions are caus-
ally implicated in diseases susceptibility and tumorigenesis, 
while others might be non-functional and incidental as pas-
senger [84, 85]. However, identification of disease- and can-
cer-causing mutations is still a great challenge.  

 Besides affecting protein activity, stability and interac-
tion, a number of studies pinpointed out that genetic varia-
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tions can also play important roles in rewiring signaling 
pathways by changing protein phosphorylation patterns [76, 
86-88] Fig. (4). In 2006, Erxleben et al. experimentally re-
vealed two missense mutations (altered amino acid) of S439 
and S1517 at cytoplasmic end of the S6 helix domains of 
calcium channel CaV1.2 might be implicated in excitotoxic-
ity associated with Timothy syndrome and chronic cy-
closporin treatment of transplant patients [89]. Thus, they 
firstly raised the definition of phosphorylopathy as aberrant 
mutations that influence phosphorylation [89]. Later, they 
identified a non-synonymous single nucleotide polymor-
phism (nsSNP) K897T of the human ether-a-go-go-related 
gene 1 (hERG1) can create a new AKT-specific phosphory-
lation site to prolong the QT interval in cardiac myocytes 
[90]. They also predicted 15 additional phosphorylopathies 
for human ion channel genes [90]. Recently, accumulation of 
phosphoproteomics data provided a great opportunity to de-
tect phosphorylopathies in a genome-wide level. In 2008, 
Yang et al. observed that 64 of total 15,738 phosphorylation 
sites were potentially removed by nsSNPs [76]. Also, Riano-
Pachon collected 7,178 known phosphorylation sites in 
Arabidopsis thaliana and determined that phosphorylation 
sites in 86 proteins can be disrupted by nsSNPs [88]. Re-
cently, we re-defined the phosphorylopathy as phosSNP 
(phosphorylation-related SNP) for simplicity [86]. With a 
kinase-specific phosphorylation sites predictor of GPS 2.0 
[60], we compared the results of original and mutated protein 
sequences, and detected 64,035 potential phosSNPs (~70% 
of total nsSNPs) in 17,614 human proteins. Furthermore, we 
compiled a large data set including 23,978 experimentally 
detected human phosphorylation sites and predicted that 
2,004 phosSNPs (~2% of total nsSNPs) might change phos-
phorylation patterns in 1,528 known substrates [86]. Al-
though both of the data set and computational approach were 
different, this result was confirmed by another recent analy-
sis, while ~5% of disease-associated variations may affect 
known modification sites [87]. Interestingly, we revealed 
that 1,699 phosSNPs (83%) might induce changes in PK 
types of adjacent phosphorylation sites rather than creating 
or removing phosphorylation sites directly [86] Fig. (4). In 
addition, the creation or disruption of phosphorylation sites 
by somatic mutations might also be ubiquitous in cancers 
[91].  

PHOSPHORYLATION EVOLUTION 

 The biological diversity is largely attributed to regulatory 
evolution of molecular networks at multiple levels. Although 
changes in transcriptional regulation have been well adopted 
to play an important role in determining morphological and 
physiological diversity, recent consensus viewpoints sug-
gested that protein regulatory networks controlled by PTMs 
might also contribute to this diversity [92]. In addition, tran-
scriptional and post-translational regulations might co-evolve 
to synergistically modulate molecular machines. For exam-
ple, although the core components implicated in cell cycle 
are functionally conserved across eukaryotes, time-series 
expression profiles of these genes are only partially con-
served, whereas dynamic proteins with less conserved ex-
pression patterns are tend to be phosphorylated substrates 
[93, 94]. In this regard, the gain or loss of transcriptional 
regulation is correlated with the turnover of phosphorylation 
in the protein [93]. 

 Since more than ten thousands of phosphorylation sites 
were identified in multiple eukaryotes, it’s an urgent demand 
to evaluate difference hypotheses for phosphorylation evolu-
tion in a systematic level. In 2007, Gnad et al. quantitatively 
identified 6,600 phosphorylation sites and observed that 
phospho-Ser, Thr, and Tyr sites are dramatically more con-
served than non-phosphorylated S/T/Y residues in mammals 
[95]. Later studies solidified the results and further revealed 
that the phosphorylation sites are more conserved in both 
structured and unstructured regions of proteins from archaea 
to human, and co-evolve with their flanking regions in a 
concerted manner [96-102]. The phosphorylation motifs are 
also conserved among different data sets and organisms 
[103, 104]. Moreover, phosphorylation sites are less con-
served in the basic pathways such as replication, transcrip-
tion, translation and metabolism against vertebrate-specific 
processes such as cellular signaling and responses to stimuli 
[105]. By comparative analysis, Boekhorst et al. discovered 
several anciently conserved phosphorylation events origi-
nated before the speciation of plant and animal [106]. In ad-
dition, Landry et al. determined that phosphorylation sites 
with known functions are significantly more conserved than 
those with no characterized functions [99]. Thus, they hy-
pothesized that a substantial proportion of non-positionally 
conserved phosphorylation sites are non-functional or “junk” 
[92, 99]. For example, a comparative analysis between 
mouse and human identified 130 potentially non-functional 
phosphorylation sites [97]. However, a very recent analysis 
revealed that non-positionally conserved phosphorylation 
sites were are significantly enriched with protein and DNA-
binding annotations [107]. Thus, they argued the “junk” 
viewpoint that at least these sites can mediate biomolecular 
interactions through creating docking sites [107].  

 During evolution, accumulation of phosphorylation sites 
in proteins follows a power-law distribution as a rich-get-
richer process [108]. It was demonstrated that phosphoryla-
tion sites in substrates of cyclin-dependent kinases (CDKs) 
tend to occur in clusters [59]. Moses et al. revealed that the 
turnover of individual CDK phosphorylation sites is rapid, 
whereas clusters of sites with shifted positions are much con-
served [109]. This observation was supported by a following 
large-scale analysis of CDK substrates in Saccharomyces 
cerevisiae [110]. In this regard, Gnad et al. proposed that 
phosphorylation is more conserved at the proteins level 
rather than the sites level [111]. Moreover, Beltrao et al. 
demonstrated that the evolution of KSRs is rapid and similar 
as transcription factor-promoter interactions, with a much 
slower rate of two orders of magnitude, while a statistically 
significant divergence of genetic interactions of PKs pro-
posed that phosphorylation evolution have an impact on spe-
cies fitness [112]. Further analysis proposed that phosphory-
lation evolution plays an important role in subfunctionaliza-
tion and neofunctionalization of duplicated genes by quickly 
rewiring regulatory networks, which might buffer the 
slightly deleterious mutations before reaching fitness [113]. 
In addition, Tan et al. proposed a controversial viewpoint 
that phosphorylation evolution should be optimized to ac-
commodate beneficial genetics based on the observation of a 
negative correlation of tyrosine content and the expansion of 
tyrosine kinases in multicellular animals [114]. The tyrosine 
loss process under positive selection might minimize noisy 
signaling systems to exhibit a fitness advantage [114]. 
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DISCUSSION 

 Rapid progresses in the state-of-the-art HTP-MS tech-
niques have boomed an explosion of phosphoproteomics 
data for systematically studying phosphorylation regulation 
in a systematic level. Detection of thousands of phosphoryla-
tion sites in a single experiment has been becoming a routine 
assay. How to extract useful information underlying flood of 
data is fundamental for understanding regulatory mecha-
nisms of phosphorylation signaling pathways. In this review, 
we summarized several cutting-edge aspects of phosphopro-
teomics data mining and analysis. We apologized that not all 
related literature can be included due to the page limitation. 
Although a number of studies have been performed, compu-
tational analysis of phosphoproteomics data is still far from 
mature and remains further contributions. Through summari-
zation of current progresses, we can learn a great deal of 
experience, raise new issues and be encouraged to tackle 
next challenges. For further computational analysis, here we 
present several personal perspectives below.  

1) Development of useful databases and tools. To date, 
there are more than 50 public databases and software 
programs reported for computational analysis of phos-
phorylation [17]. However, only six resources were spe-
cifically designed to address the problems mentioned in 
the review Table 1. For example, Motif-X [39] and 
MoDL [45] can be used for ab initio discovery of PSMs 
from phosphoproteomics data, whereas SMALI can pre-
dict potential PBMs interacting with SH2 domain [47, 
49]. For phosphorylation network construction and 
analysis, NetworKIN contains pre-predicted in vivo 
ssKSRs [63, 66], while SubExtractor can identify differ-

entially regulated phosphorylation subnetworks [82]. 
Moreover, PhosSNP is the only database for genetic 
variations/SNPs that influence phosphorylation state 
[86]. The main proposes of other databases or tools 
listed in Table 1 are not for phosphoproteomics data 
analysis. Particularly, no program was constructed for 
specifically analyzing phosphorylation evolution. In this 
regard, implementation of more specific resources is ur-
gently needed in this field.  

2) Discovery and further analysis of phosphorylation mo-
tifs. (i) To data, there are only two preliminary ap-
proaches such as Motif-X [39] and MoDL [45] designed 
for retrieving phosphorylation motifs from phosphopro-
teomics data. We believe more and more efficient and 
accurate algorithms will be developed for this task. (ii) 
In previous studies, most computational efforts have 
been made to discover potential PSMs from mixture 
data [39-45]. Whether we can also systematically extract 
known and novel PBMs is still a challenge. (iii) Can 
phosphorylation motif be regarded as the “barcode” of 
phosphoproteomics data for its simplicity? If so, can we 
develop efficient methods to compare the “phosphoryla-
tion barcodes” to distinguish the similarity and differ-
ence among heterozygous phosphoproteomics data sets? 
(iv) How to form links between phosphorylation motifs 
and the functional consequences and regulatory roles? 
Are there any phosphorylation motifs dramatically en-
riched in special biological processes and pathways? A 
possible strategy can be adopted by calculating signifi-
cantly enriched gene ontology (GO) terms for specific 
phosphorylation motif-containing proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Three typical classes of single-point genetic variations that influence protein phosphorylation state, including (A) change of an 

amino acid residue with Ser/Thr/Tyr or vice versa to create a potential new [Type I (+)] or remove an original phosphorylation site [Type I (-

)], (B) nsSNPs to generate [Type II (+)] or disrupt adjacent phosphorylation sites [Type II (-)], (C) and variations to induce changes of PK 

types in adjacent phosphorylation sites (Type III) [86]. 
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3) Systematic analysis of phosphorylation network. (i) For 
computational modeling of phosphorylation networks, 
most current efforts have been focused on human [61, 
63, 66, 69, 73-75]. Accurate prediction of in vivo ssKSR 
is the basis for phosphorylation network construction, 
with a two-step procedure including prediction of 
kinase-specific phosphorylation sites based on specific 
PSMs and integration of contextual factors to reduce 
false positive hits. For the former problem, most of ex-
perimentally identified kinase-specific sites were identi-
fied in mammals [71]. Thus, the training data for non-
mammalian species is quite limited. For the latter issue, 
only PPI information was proved to be an efficient filter. 
For example, even the contextual score in NetworKIN 
was calculated based on pre-predicted PPI data [63, 66]. 
How to include more various contextual filters and de-
sign a ubiquitous model for generally prediction of in 
vivo ssKSR in eukaryotes still remains to be carried out. 
(ii) Although a number of studies were performed to 
model phosphorylation network, we can still obtain poor 
knowledge of functional consequences and regulatory 
roles of phosphorylation from network analysis [61, 63, 
66, 69, 73-75]. In this regard, development of efficient 
approaches for phosphorylation network analysis is also 
an important topic. (iii) Again, since multiple phos-
phorylation networks were constructed, can we develop 
efficient methods by comparing phosphorylation net-
works to retrieve new information? (iv) Currently, only 
KSRs were considered in modeling phosphorylation 
network. Can we include more components, such as 
phospho-binding proteins and phosphatases to construct 
a more integrative network?  

4) Functional analysis of genetic variation that alters phos-
phorylation state. (i) Besides nsSNPs, we believe that 
other types of variations such as somatic mutations and 
alternative splicing isoforms can also influence protein 
phosphorylation. Here we define the phosGV (Phos-
phorylation-related genetic variation) that change phos-
phorylation state. How to systematically detect phosGV 
remains to be performed. (ii) Since flood of variation 
data is identified from deep-sequencing experiments 
[83], can we form a link between genomics and phos-
phoproteomics to demonstrate the functional conse-
quence of genetic variations? (iii) Can we analyze 
phosGVs in a network level, and construct individual-
ized phosphorylation network? (iv) How to analyze the 
individualized phosphorylation network to generate use-
ful information for personal medicine?  

5) Phosphorylation evolution. (i) It’s a controversial issue 
that whether non-functional phosphorylation sites really 
exist [99, 107]. The debate will be going on, while more 
studies need to be carefully carried out to evaluate dif-
ference hypotheses. (ii) In 2008, Basu et al. observed 
that a PKA-specific site S38 of activation-induced 
cytidine deaminase (AID) in mouse can be mimic with 
aspartate 44 (D44) in zebrafish AID (zAID), which sug-
gests an evolutionary divergence from constitutive to 
PKA-regulated AID interaction [115]. Is this phenome-
non ubiquitously in eukaryotes? Can we systematically 
determine the turnover modes of phosphorylation during 
evolution? (iii) Can we analyze phosphorylation evolu-

tion at network level? Can we use the phosphorylation 
evolutionary concepts to at least partially model the de-
velopment of diseases and cancers?  

 Taken together, above we listed fifteen questions for fur-
ther researches. We believe more and more challenges will 
emerge for phosphoproteomics mining and analysis. Since 
large-scale analyses of sumoylation [116, 117], acetylation 
[118, 119] and ubiquitination [120] have also been per-
formed, the concepts and approaches in this review can be 
analogously employed to study these modifications gener-
ally. Finally, we believe that combination of experimental 
and computational techniques will propel the phosphopro-
teomics research into a new phase.  
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