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ARTICLE

DeepPhagy: a deep learning framework for quantitatively measuring autophagy
activity in Saccharomyces cerevisiae
Ying Zhang a*, Yubin Xie b*, Wenzhong Liu b, Wankun Deng a, Di Peng a, Chenwei Wang a,
Haodong Xu a, Chen Ruan a, Yongjie Deng b, Yaping Guo a, Chenjun Lu c, Cong Yi c, Jian Ren b,
and Yu Xue a

aDepartment of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and
Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; bState
Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; cDepartment of Biochemistry and
Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou, China

ABSTRACT
Seeing is believing. The direct observation of GFP-Atg8 vacuolar delivery under confocal microscopy is one
of the most useful end-point measurements for monitoring yeast macroautophagy/autophagy. However,
manually labelling individual cells from large-scale sets of images is time-consuming and labor-intensive,
which has greatly hampered its extensive use in functional screens. Herein, we conducted a time-course
analysis of nitrogen starvation-induced autophagy in wild-type and knockout mutants of 35 AuTophaGy-
related (ATG) genes in Saccharomyces cerevisiae and obtained 1,944 confocal images containing > 200,000
cells. We manually labelled 8,078 autophagic and 18,493 non-autophagic cells as a benchmark dataset and
developed a new deep learning tool for autophagy (DeepPhagy), which exhibited superior accuracy in
recognizing autophagic cells compared to other existingmethods, with an area under the curve (AUC) value
of 0.9710 from 10-fold cross-validations. We further used DeepPhagy to automatically analyze all the images
and quantitatively classified the autophagic phenotypes of the 35 atg knockout mutants into 3 classes. The
high consistency in our computational and biochemical results indicated the reliability of DeepPhagy for
measuring autophagic activity. Moreover, we used DeepPhagy to analyze 3 additional types of autophagic
phenotypes, including the targeting of Atg1-GFP to the vacuole, the vacuolar delivery of GFP-Atg19, and the
disintegration of autophagic bodies indicated byGFP-Atg8, all with satisfying accuracies. Taken together, our
study not only enables the GFP-Atg8 fluorescence assay to become a quantitative measurement for
analyzing autophagic phenotypes in S. cerevisiae but also demonstrates that deep learning-based methods
could potentially be applied to different types of autophagy.

Abbreviations: Ac: accuracy; ALP: alkaline phosphatase; ALR: autophagic lysosomal reformation; ATG:
AuTophaGy-related; AUC: area under the curve; CNN: convolutional neural network; Cvt: cytoplasm-to-
vacuole targeting; DeepPhagy: deep learning for autophagy; fc_2: second fully connected; GFP: green
fluorescent protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3 beta; HAT: histone
acetyltransferase; HemI: Heat map Illustrator; JRE: Java Runtime Environment; KO: knockout; LRN: local
response normalization; MCC: Mathew Correlation Coefficient; OS: operating system; PAS: phagophore
assembly site; PC: principal component; PCA: principal component analysis; PPI: protein-protein inter-
action; Pr: precision; QPSO: Quantum-behaved Particle Swarm Optimization; ReLU: rectified linear unit;
RF: random forest; ROC: receiver operating characteristic; ROI: region of interest; SD: systematic deriva-
tion; SGD: stochastic gradient descent; Sn: sensitivity; Sp: specificity; SRG: seeded region growing; t-SNE:
t-distributed stochastic neighbor embedding; 2D: 2-dimensional; WT: wild-type.
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Introduction

In eukaryotic cells, macroautophagy (hereafter referred to as
autophagy) is an evolutionarily conserved pathway for degrading
and recycling cytoplasmic components, such as superfluous, obso-
lete or toxic structures, soluble proteins, protein aggregates or
pathogens, to maintain cellular homeostasis and functions in
both bulk non-selective and selectivemanners [1]. The autophagic
process is dynamically orchestrated by protein products of
AuTophaGy-related (ATG) genes and autophagy regulators,

whereas the dysfunction of autophagy has been implicated in
a wide range of human diseases including cancer, diabetes and
neurodegenerative disorders [2–5]. Accurately monitoring and
measuring autophagic activity is fundamental for understanding
the functional importance and regulatory roles of autophagy
under physiological and pathological conditions.

In the yeast Saccharomyces cerevisiae, one of the most con-
venient end-point measurements for monitoring autophagy is
the direct observation of the vacuolar delivery of N-terminally
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green fluorescent protein (GFP)-tagged Atg8 (GFP-Atg8) [6].
Since a considerable proportion of GFP-Atg8 proteins incorpo-
rated into the inner membrane of completed autophagosomes
will be degraded by vacuolar hydrolases, free GFP molecules are
released into the vacuole and can be detected by fluorescence
microscopy. Thus, counting the percentage of yeast cells with
GFP-Atg8 signals within the vacuole can be a relatively accurate
and quantitative readout to monitor autophagy activity [7–9]. In
2012, Dr. Li Yu’s lab used such an assay to conduct a functional
screen of 8 histone acetyltransferases (HATs), discovering that
the temperature-sensitive mutant esa1-1 greatly diminishes
GFP-Atg8 vacuolar translocation. They further demonstrated
that Esa1 regulates autophagy through specifically acetylating
Atg3 at K19 and K48 sites [7]. Later, they performed
a mutagenesis screen of 44 individual phosphorylation sites, or
phosphorylation site combinations, and identified that the
S174A substitution of Atg31 significantly abolished the vacuolar
delivery of GFP-Atg8 and disrupted Atg9 recycling [8]. More
recently, they used the same assay and found a protein kinase,
Mec1, to be a critical regulator of glucose deprivation-induced
autophagy [9].

It should be noted that the GFP-Atg8 fluorescence assay
has yet to be widely adopted for functional screens because
manually distinguishing and individually labelling yeast cells
with or without vacuole-localized GFP-Atg8 is labor-
intensive, time-consuming and error-prone. In all 3 studies
in which it has been used, 100 cells were randomly selected
and counted for each sample, with this procedure repeated 3
times to calculate the mean and standard deviation values [7–
9]. Thus, if the tedious procedure of cell counting can be
automatically accomplished, e.g., by a computer, it will imme-
diately enable the assay to become a much faster and more
efficient approach for large-scale screens. Recently, various
computational methods have been developed for automati-
cally recognizing and quantifying cell phenotypes from high-
throughput and high-content microscopy data [10,11].
A number of highly useful tools, such as CellProfiler, ImageJ
and EBImage, can efficiently process fluorescence-based phe-
notypic images [12–14]. For example, CellProfiler was recom-
mended to count N-terminally GFP-tagged MAP1LC3/LC3
(microtubule-associated protein 1 light chain 3 beta) or GFP-
Atg8 puncta in individual mammalian or yeast cells, as an
alternative assay to monitor autophagy [15]. However, the
conventional machine learning strategies often meet difficul-
ties in efficiently extracting informative features upon large
datasets, whereas advances in deep learning algorithms have
provided much more powerful approaches in feature repre-
sentations [16–19]. Thus, it can be naturally anticipated that
deep learning algorithms might be helpful for monitoring the
vacuolar delivery of GFP-Atg8 in yeast.

In this study, we transformed a GFP-ATG8 plasmid into
wild-type (WT) and each knockout (KO) mutant of the 35
ATG genes in S. cerevisiae, separately, and then obtained 1,944
confocal microscopy images containing > 200,000 yeast cells
during nitrogen starvation-induced autophagy. Then, we manu-
ally labelled 8,078 autophagic and 18,493 non-autophagic cells as
the benchmark dataset and developed a novel deep learning for
autophagy software package named DeepPhagy, which taught
a computer to locate single yeast cells and discriminate whether

GFP signals could be identified within the vacuole of each cell
from fluorescence-based images. The performance of DeepPhagy
was critically evaluated and compared with other existing tools
and it exhibited superior accuracy for autophagic cell recogni-
tion. We further used DeepPhagy to automatically analyze all
1,944 images and quantitatively classify the autophagic pheno-
types of the 35 atg KO mutants into 3 categories, class I, II and
III. We observed that autophagy activity is almost fully blocked
in class I mutants in which the deleted ATG genes are critical
components of the core machinery of autophagy. The vacuolar
delivery of GFP-Atg8 is significantly prolonged in class II
mutants, but only considerably delayed in class III mutants.
Immunoblotting assays were conducted and the computational
identifications were highly consistent with biochemical assays,
indicating the reliability of DeepPhagy in measuring autophagy
activity. To test the usefulness of DeepPhagy in the analysis of
other types of autophagy, 2 additional markers including Atg1-
GFP and GFP-Atg19 were adopted and fluorescent images were
taken under confocal microscopy. Our results demonstrated that
DeepPhagy can be directly used to recognize the Atg1-GFP
vacuolar delivery, with an AUC value of 0.9567. For the vacuolar
targeting of GFP-Atg19, the original model in DeepPhagy
achieved an AUC value of 0.9044, whereas an updated model
could reach a 10-fold cross-validation AUC score of 0.9388. In
addition, we re-analyzed the GFP-Atg8 images and re-trained
a model for the discrimination of disintegrating autophagic
bodies inside the vacuole, with a 10-fold cross-validation AUC
value of 0.9214. Taken together, our studies not only provide
a powerful computational tool for processing large-scale micro-
scopy data in S. cerevisiae but also suggest that the deep learning
algorithms could be broadly applied to analyze different types of
autophagy. The stand-alone local packages of DeepPhagy 1.0
were written in Java 1.8 (J2SE8) and support 3 major operating
systems, including Windows, Unix/Linux, and Mac. DeepPhagy
is freely available for academic research at http://deepphagy.
biocuckoo.org/.

Results

A deep learning framework for monitoring autophagy
from fluorescent images

At present, 42 ATG genes have been reported to be involved
mainly or exclusively in yeast autophagy, whereas 5 ATG genes,
including ATG25, ATG28, ATG30, ATG35 and ATG37, are only
encoded by Pichia Pastoris [20,21]. We transformed a GFP-ATG
8 plasmid into WT S. cerevisiae and 35 atg KO strains (atg1Δ,
atg2Δ, atg3Δ, atg4Δ, atg5Δ, vps30/atg6Δ, atg7Δ, atg9Δ, atg10Δ,
atg11Δ, atg12Δ, atg13Δ, atg14Δ, atg15Δ, atg16Δ, atg17Δ, atg18Δ,
atg19Δ, atg20Δ, atg21Δ, atg22Δ, atg23Δ, snx4/atg24Δ, atg26Δ,
atg27Δ, atg29Δ, atg31Δ, atg32Δ, atg33Δ, atg34Δ, atg36Δ, atg38Δ,
atg39Δ, atg40Δ, and atg41Δ; the S. cerevisiae atg8Δ and atg42Δ
mutant was not included; Table S1) and counterstained the
vacuoles with the dye FM4–64. Upon nitrogen starvation, 3
images at different regions were taken at 1 h intervals from 0
to 5 h by confocal microscopy, which recorded the GFP-Atg8
signal in the green channel and the vacuole signal in the red
channel. Three biological replicates were obtained for all 36 yeast
strains and in total we collected 1,944 (6 × 3 × 3 × 36) yeast cell

2 Y. ZHANG ET AL.

http://deepphagy.biocuckoo.org/
http://deepphagy.biocuckoo.org/


images. From these images, we randomly selected one picture for
each time interval for each yeast strain. Then, we manually
labelled 26,571 yeast cells including 8,078 autophagic and
18,493 non-autophagic cells from the 216 (36 × 6) images. We
established a pipeline for image pre-processing, which down-
sampled the original picture to a lower resolution for faster
analysis, enhanced the image contrast, sharpened, detected and
repaired the cell edges, located weighted centroids of individual
cells, segmented cells and defined regions of interest (ROIs) for
further training [22–27]. The parameters for imaging pre-
processing were fine-tuned using the 26,571 labelled cells as
a benchmark dataset.

For recognizing autophagic phenotypes, we developed a new
computational method named DeepPhagy, which implemented
a 5-layer convolutional neural network (CNN). DeepPhagy con-
tained 3 connected convolutional blocks, each containing
a convolution layer and a pooling layer (Figure 1). For each
convolution layer, a rectified linear unit (ReLU) was applied to
avoid gradient diffusion during the training process and a local
response normalization (LRN) was introduced to improve the
generalization capacity. The first convolution block convolved

individual cell images into feature maps, whereas the latter 2
blocks reinforced feature representations. Following the 3 con-
volutional blocks, 2 fully connected layers were implemented for
classifying the inputted fluorescent images. For the classification,
the output was implemented with a SoftMax function to calcu-
late the probability [18,28,29].

The performance of recognizing autophagic phenotypes
from single cell images

For training and testing DeepPhagy, the 26,571 labelled yeast
cells were arbitrarily separated into a training dataset and
a testing dataset, with a ratio of nearly 10:1. The training set
contained 24,156 cells, including 7,322 autophagic and 16,834
non-autophagic cells, whereas the testing set contained 2,415
cells, with 756 autophagic and 1,659 non-autophagic cells.
Using the training dataset, we performed n-fold cross-
validations to evaluate the performance of DeepPhagy. The
receiver operating characteristic (ROC) curves were drawn,
while the area under the curve (AUC) values were calculated

Figure 1. The DeepPhagy procedure for computationally identifying autophagic and non-autophagic yeast cells from fluorescent images. In the imaging pre-
processing step, the original 1024 × 1024 confocal images were first downsampled to a lower resolution of 650 × 650 pixels for quicker processing. Individual cells
were located and then cropped to a size of 61 × 61 pixels, centred on their weighted centroids. In the autophagy monitoring step, a 5-layer CNN model was
constructed containing 3 consecutive convolutional blocks for feature representations and 2 fully connected layers for image classifications. The functions of ReLU,
LRN and Max pooling were used to avoid gradient diffusion, improve the generalization capacity and reduce feature dimensionality, respectively.
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as 0.9749, 0.9708, 0.9726 and 0.9710 for the 4-, 6-, 8- and 10-
fold cross-validations, respectively (Figure 2A).

We compared DeepPhagy with other existing tools, includ-
ing CellProfiler, DeepYeast and DeepLoc [12,28–30]. As pre-
viously described, a random forest (RF) classifier was trained
on 102 features, which were extracted using a CellProfiler
pipeline [29,30]. Recently, DeepYeast and DeepLoc both
established 11-layer CNN frameworks, which contained 8
convolutional blocks and 3 fully connected layers for the
accurate classification of protein subcellular localizations
from high-throughput microscopy data [28,29]. We re-
trained the 3 algorithms using the same DeepPhagy training
set and the AUC values of the 10-fold cross-validations were
0.8489, 0.9483 and 0.9574 for CellProfiler, DeepYeast and
DeepLoc, respectively (Figure 2A). Additionally, we fixed the
specificity (Sp) scores of the 4 programs to approximately
95%, 90% and 85%, and compared their accuracy (Ac), sensi-
tivity (Sn), precision (Pr) and Mathew Correlation Coefficient

(MCC) values (Table S2). In general, the performance of
DeepPhagy was higher than the other 3 tools. We also com-
pared the 3 tools to DeepPhagy using the testing dataset, in
which AUC values were computed as 0.9813, 0.8697, 0.9761
and 0.9675 for DeepPhagy, CellProfiler, DeepYeast and
DeepLoc, respectively (Figure 2B). On the single cell level,
we found that all deep learning algorithms are much better
than the conventional machine learning classifiers, whereas
the accuracy of DeepPhagy is considerably higher than
DeepYeast and DeepLoc (Figure 2A,B).

Using the 216 yeast images, we carefully analyzed the
mistakes made by DeepPhagy. We found the mistakes to be
due primarily to technical issues and yeast population het-
erogeneity, including regions with contamination (‘No cell’)
or ambiguous signals (‘Low signal’), and dead and immature
cells that were not manually labelled but could be mista-
kenly recognized as cells during the imaging pre-processing
step (Figure 2C). During the single cell-based classification,

Figure 2. The computational performance of DeepPhagy 1.0. (A) The ROC curves and AUC values of 4-, 6-, 8- and 10-fold cross-validations of DeepPhagy and 10-fold
cross-validations of CellProfiler, DeepYeast and DeepLoc on the same training dataset [12,28,29]. (B) The comparison of DeepPhagy, CellProfiler, DeepYeast and
DeepLoc on the testing dataset. (C) Six types of mistakes occurred in DeepPhagy, including the identification of regions with no cells, regions with low signals, dead
and immature cells, false-negative hits and false-positive predictions. Scale bar: 2 µm. (D) t-SNE visualization of extracted features demonstrating the ability to
distinguish autophagic cells from non-autophagic cells for DeepPhagy and other methods [31].
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both false-negative and false-positive predictions could not
be fully avoided (Figure 2C). To investigate whether the
features extracted by DeepPhagy can distinguish autophagic
cells against non-autophagic cells, we visualized the activa-
tions of the last fully connected layer of DeepPhagy in
2-dimensional (2D) diagrams using t-distributed stochastic
neighbor embedding (t-SNE) for 2,000 randomly selected
single cells from the benchmark dataset (Figure 2D) [31].
We also visualized features extracted from CellProfiler,
DeepYeast and DeepLoc using the same dataset (Figure
2D). For other tools, different types of labelled cells were
classified with a substantial overlap, whereas DeepPhagy
clearly distinguished the 2 types of yeast cells (Figure 2D).
Taken together, our results indicated that DeepPhagy is
a stable and robust predictor for the recognition of autop-
hagic phenotypes from cell images, exhibiting a superior
performance against other existing methods.

The construction and usage of deepphagy software
packages

DeepPhagy 1.0 was written in Java 1.8 and packaged with
Install4j 6.0. Both the image pre-processing pipeline and the
5-layer CNNs were integrated in DeepPhagy. Thus, users can
directly input one or multiple fluorescent images to have autop-
hagic phenotypes automatically recognized in a quantitative
manner. Three stand-alone packages were developed to support
3 major x64 operating systems (OSs), includingWindows, Unix/
Linux, and Mac. The applicability of DeepPhagy was rigorously
tested under Windows 7/10, Ubuntu, and Apple Mac OS 10.12
(Sierra).

For convenience, we developedDeepPhagy 1.0 into an easy-to
-use program and took one image of atg17Δ as an example to
describe its usage. In the ‘Count’module, the image data in one of
5 formats, including BMP, JPG, PNG, GIF or TIF, can be loaded
by clicking on the ‘Load’ button in the main interface (Figure
S1A). It should be noted that the size of the original image should
be larger than 650 × 650 pixels because inputted pictures will be
downsampled to 650 × 650 pixels for rapid analysis. By clicking
on the ‘Recognize’ button, the image pre-processing will be
conducted for cell segmentation and centroid location, and indi-
vidual cells will be cropped from the whole image into small
61× 61pixel snapshots. The segmented cellswill then be inputted
into pre-trained CNNs for phenotypic classification (Figure 1).
As default parameters, autophagic (‘Positive’) and non-
autophagic (‘Negative’) cells are marked with red and yellow
rings, respectively (Figure S1B). Additionally, DeepPhagy allows
users to manually label the images either before or after compu-
tational recognition, by clicking on the ‘Manual’ option (Figure
S1B). The labelled image can be exported in multiple formats by
clicking on the ‘Save’ button (Figure S2A). In a typical functional
screen, hundreds or thousands of images will be generated and
inputting images individually for the analysis is time-consuming.
Thus, DeepPhagy allows the input of a batch of images for
automatic processing in the ‘Batch’ module (Figure S2B). For
more details on the usage of DeepPhagy 1.0, please refer to the
manual, which can be downloaded from http://deepphagy.bio
cuckoo.org/down.php.

A quantitative analysis of autophagy activities of yeast
atg KO mutants

For the large-scale analysis of microscopy images, DeepPhagy
cropped individual cells from whole images and then predicted
the autophagic phenotype for each cell image by outputting
a probability score calculated by the SoftMax function. Using
different probabilities as thresholds can generate varied predic-
tions, whichmight be far from reality. For example, from an image
of atg17Δ (Figure 3A), wemanually labelled 57 autophagic and 64
non-autophagic cells (Figure 3B). Using DeepPhagy with either
a lower or a higher threshold generated predictions far from the
manual labelling (Figure 3C,D). To adjust for this, we used the
benchmark dataset with 216 images, to calculate the systematic
derivation (SD) values of the differences between the manually
labelled and computationally predicted results under different
thresholds. From these calculations, the global threshold was
determined to be 0.45, with a minimum SD value of 6.09%
(Figure 3E). Using this score as the default threshold, DeepPhagy
automatically labelled 62 autophagic and 65 non-autophagic cells
(Figure 3F).

Next, we directly inputted all 1,944 WT and atg KO mutant
images into DeepPhagy using the ‘Batch’module. Autophagic and
non-autophagic cells were computationally identified and the
autophagy activities, denoted as the proportion of autophagic
cells among all the detected cells, were measured for each image
(Table S3). Using the hierarchical clustering algorithm in the
R package (https://www.r-project.org/), we analyzed the autop-
hagy activity profiles and visualized the results with Heatmap
Illustrator (HemI), a software package for illustrating heatmaps
[32]. Unexpectedly, the phenotypes of the 36 yeast strains were
unambiguously clustered into 3 groups, namely, class I, class II and
class III (Figure 4A). To test whether such a clusteringwas reliable,
we further used the principal component analysis (PCA) algo-
rithm in R and examined the first 3 principal components (PCs).
Again, the 3 classes of autophagic phenotypes were able to be
clearly discriminated (Figure 4B).

The average autophagy activities of each strain at different
time points from 0 to 5 h were measured and shown for the 3
classes separately (Figure 4C). We found that the vacuolar deliv-
ery of GFP-Atg8 was largely or almost fully abolished in class
I mutants, which included the atg1Δ, atg2Δ, atg3Δ, atg4Δ, atg5Δ,
vps30/atg6Δ, atg7Δ, atg9Δ, atg10Δ, atg12Δ, atg13Δ, atg14Δ,
atg16Δ, atg18Δ and atg21Δ mutants (Figure 4C). None of the
mutants reached an average autophagy activity ≥ 25%, even at
5 h after nitrogen starvation. The class II strains included the
atg11Δ, atg17Δ, atg23Δ, atg27Δ, atg29Δ, atg31Δ, atg38Δ and
atg41Δ mutants. In these strains, the GFP-Atg8 translocation
was significantly prolonged, but far from being fully blocked
(Figure 4C). After 1 h of nitrogen starvation, the average autop-
hagy activities of most of the class II strains were less than 25%,
with the exception of atg38Δ, and no strains exhibited an average
autophagy activity ≥ 50% even at 2 h after starvation (Figure 4C).
For the class III strains, which included the WT and the atg15Δ,
atg19Δ, atg20Δ, atg22Δ, snx4/atg24Δ, atg26Δ, atg32Δ, atg33Δ,
atg34Δ, atg36Δ, atg39Δ and atg40Δ mutants, GFP-Atg8 delivery
was only considerably or slightly delayed at 1 h after starvation.
All class III mutants reached an average autophagy activity >50%
after 2 h of starvation (Figure 4C). In particular, the atg22Δ,
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atg32Δ, atg34Δ, and atg36Δmutants and the WT were classified
together in a single sub-class (Figure 4A).

To further distinguish the phenotypes within and across the 3
classes, the autophagy activities of 9 replicates at each time interval
were assessed for each strain and pairwise comparisons were
carried out through a two-tailed t-test (Benjamini-Hochberg
adjusted p-value < 0.01). Obviously, the significant differences
between yeast strains of the same class were much lower than
between strains from different classes (Table S4). Additionally, we
found that most of yeast strains in the same class did not exhibit
significant differences with one another at 0 h, while their percent
differences increased considerably during autophagy (Table S4).
For example, in class II, the autophagy activity of atg11Δ was not
significantly different from atg38Δ at 0 h (p-value = 1.53E-

02 > 0.01), whereas the p-values were calculated to be 4.45E-08,
7.03E-16, 4.23E-12, 5.85E-15 and 7.46E-14 at 1, 2, 3, 4 and 5 h after
starvation, respectively (Table S4). Thus, our analysis demon-
strated that autophagy activities of KO mutants in the same class
could still be significantly different from each other at different
intervals of time after starvation.

Further validations and analyses of the 3 autophagic
phenotype classes

We manually checked the computationally labelled images and
found that most of the cells were correctly identified by
DeepPhagy. For example, we found that most of the atg1Δ and
atg21Δmutant cells (class I) were non-autophagic from 0 to 5 h

Figure 3. The importance of a global threshold for large-scale analyses. (A) An original image of atg17Δ at 5 h after nitrogen starvation. Scale bar: 5 µm. (B) From the
image, 57 autophagic and 64 non-autophagic cells were manually labelled. (C) DeepPhagy labelled 112 autophagic and 15 non-autophagic cells under a lower
threshold of 0.30. (D) Under a higher threshold of 0.60, 33 autophagic and 94 non-autophagic cells were computationally labelled. (E) The global threshold was
calculated with a minimum SD of the manually and computationally labelled results. (F) Under the global threshold of 0.45, DeepPhagy labelled 62 autophagic and
65 non-autophagic cells.
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during nitrogen starvation, whereas mutants in class II, such as
the atg17Δ and atg23Δ strains, contained few autophagic cells at
early stages after starvation, with the proportion of autophagic
cells considerably increasing in later stages (Figure 5A). In the
class III strains, such as the atg19Δ and atg26Δ mutants, a large
proportion of the cells became autophagic after 2 h of starvation
(Figure 5A). To evaluate the reliability of high-throughput image
analyses and phenotype classifications, immunoblotting assays
were performed for the atg1Δ, atg17Δ, atg19Δ, atg21Δ, atg23Δ
and atg26Δ mutants after nitrogen starvation (Figure 5B). The
ratios of free GFP to total GFP (sum of full-length GFP-Atg8 and
free GFP) were quantified and compared to the DeepPhagy-
based quantifications (Figure 5C). From the results, we found
that the biochemical validations were highly consistent with the
computational identifications.

The protein-protein interactions (PPIs) of the Atg proteins
(except Atg8) were analyzed and visualized by Circos [33]. From
2 high-quality PPI databases, including mentha and BioGRID,
we retrieved 63 non-redundant pairs of experimentally identified
PPIs among the 31 Atg proteins; no known interacting partners
were obtained for Atg15, Atg22, Atg26 or Atg33 (Figure 6)
[34,35]. Six types of PPIs were identified based on the autophagy
classifications, including 23 class I-class I, 7 class II-class II, 1
class III-class III, 18 class I-class II, 6 class I-class III and 8 class II-
class III interactions. Because most of the class I members form
distinct protein complexes and participate in autophagosome
formation during autophagy, it was not unusual that the largest
number of PPIs were of the class I-class I type. Furthermore, the
number of intergroup and intragroup PPIswere almost identical,
indicating a complicated association among the different classes

Figure 4. A systematic and time-course analysis of the autophagy process in atg KO mutants. Yeast cells were cultured in nitrogen starvation medium (SD [–N]) and
imaged by fluorescence microscopy at 1 h intervals from 0 to 5 h. All images were analyzed by DeepPhagy and the autophagy activity was assessed by calculating
the proportion of autophagic cells against all detected cells for each image. (A) The hierarchical clustering algorithm classified the autophagic phenotypes of 36 yeast
strains into 3 categories, class I, class II and class III. (B) The PCA-based classification of autophagic phenotypes. (C) The autophagy activity values at different time
points for each yeast strain.
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of Atg proteins (Figure 6). In a previous study, we showed
computationally that 21 of 35 Atg proteins in S. cerevisiae are
conserved in Homo sapiens with potential orthologs, including
Atg1, Atg2, Atg3, Atg4, Atg5, Vps30/Atg6, Atg7, Atg8, Atg9,
Atg10, Atg11, Atg12, Atg13, Atg14, Atg16, Atg17, Atg18,
Atg20, Atg21, Snx4/Atg24 and Atg38 [20]. Here, we found that
all the class I members are conserved, whereas only Atg11, Atg17
and Atg38 of class II and Atg20 and Snx4/Atg24 of class III are
conserved in H. sapiens (Figure 6). In this regard, our studies

support the importance of Atg proteins that are involved in
autophagosome formation.

An extension of deepphagy to other types of autophagic
phenotypes

To exploit the applicability of DeepPhagy in the recognition of
other types of autophagic phenotypes, we chose 2 additional
autophagy markers, Atg1-GFP and GFP-Atg19. As a conserved

Figure 5. Biochemical validations of the DeepPhagy results. (A) Partial images computationally labelled by DeepPhagy are shown for atg1Δ and atg21Δ (class I), atg17Δ and
atg23Δ (class II), and atg19Δ and atg26Δ (class III). It can be observed that most of cells were correctly labelled. Scale bar: 5 µm. (B) Immunoblotting assays for the 6 atg KO
mutants at different time points during nitrogen starvation. The protein expression level of Pgk1 was used as a control and the free GFP:total GFP ratios were quantified to
measure autophagy activity. (C) The comparison of autophagy activities quantified by DeepPhagy (white columns) and immunoblotting assays (black columns).
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serine/threonine protein kinase, Atg1 forms amultiprotein com-
plex with Atg13, Atg17, Atg29 and Atg31 and plays a critical role
in both the bulk and selective autophagy pathways [36,37]. It was
reported that the vacuolar delivery and lysosomal digestion of
Atg1-GFP are similar to that of GFP-Atg8 [37]. Thus, Atg1-GFP
can serve as an alternative readout for monitoring autophagy
activity. Here, we individually transformed an ATG1-GFP plas-
mid into the WT and 7 atg KO strains, including atg13Δ and
atg21Δ in class I, atg17Δ and atg23Δ in class II, and atg19Δ, snx4/
atg24Δ and atg26Δ in class III. The procedure was identical to

the GFP-Atg8 assay and we obtained 432 (6 × 3 × 3 × 8) yeast cell
images. For each timepoint we randomly selected an image and
manually labelled 2,519 positive and 6,649 negative cells from
the 48 (8 × 6) images by judging whether GFP signals could be
identified within the vacuole. Based on this labelled dataset, we
directly inputted the 48 images into DeepPhagy and calculated
an AUC value as 0.9567 (Figure 7A), which is slightly lower than
the accuracy for GFP-Atg8 (AUC = 0.9710) (Figure 2A). Thus,
DeepPhagy can be directly used for monitoring the targeting of
Atg1-GFP to the vacuole. Furthermore, we used DeepPhagy to

Figure 6. The PPI network of yeast Atg proteins was visualized by Circos [33]. From mentha and BioGRID, we retrieved 63 unique pairs of experimentally identified
PPIs among 31 Atg proteins [34,35]. For the arc of the outer ring, different colors denote the Atg protein categories and the lengths are proportional to the number
of interacting partners for each Atg. The average autophagy activities of each atg KO mutant during nitrogen starvation are diagrammed in the inner ring. Different
interaction types are marked with different colors. Atg proteins conserved or not in H. sapiens are shown in red or blue, respectively.

AUTOPHAGY 9



analyze the 432 images with a pre-defined global threshold of
0.45 (Figure 3E). Since Atg13 and Atg17 are required for form-
ing the Atg1 complex to initiate autophagy [36], it was not
surprising that the vacuolar delivery of Atg1-GFP is dramatically
abolished in the atg13Δ and atg17Δ strains (Figure 7B).
Previously, it was demonstrated that the recycling of the periph-
eral membrane protein Atg23 from the phagophore assembly
site (PAS) is dependent on the kinase activity of Atg1 [38]. We
found that the deletion of ATG23 also considerably diminished
Atg1-GFP targeting, which was not impacted in other KO
mutants (Figure 7B).

As a selective autophagy receptor, Atg19 is essential for the
recruitment and assembly of vacuolar enzymes in the cytoplasm-
to-vacuole targeting (Cvt) pathway [39,40]. Thus, GFP-Atg19 can
be helpful for specifically measuring selective autophagy activity.
In this study, we transformed a GFP-ATG19 plasmid into theWT
and 7 atg KO strains, including atg1Δ, atg13Δ and atg21Δ in class
I, atg17Δ and atg23Δ in class II, and snx4/atg24Δ and atg26Δ in
class III. Using the same procedure as above, we obtained 432
(6 × 3 × 3 × 8) GFP-Atg19 fluorescent images. Again, we ran-
domly selected one image from each time interval and manually
labelled 3,068 positive and 5,886 negative cells from the 48 (8 × 6)

Figure 7. The applicability of DeepPhagy for analyzing other types of autophagic phenotypes. For large-scale analyses, a pre-defined global threshold of 0.45 was
adopted (Figure 3E). (A) The accuracy of DeepPhagy for directly discriminating cells with or without Atg1-GFP vacuolar delivery. (B) The DeepPhagy-based analysis of
Atg1-GFP targeting in the WT and 7 atg KO strains. (C) The accuracies of the original DeepPhagy model and the newly re-trained model for recognizing GFP-Atg19
vacuolar delivery. The original model mistakenly recognized a proportion of cells containing large GFP puncta associated with the vacuolar membrane as positive
hits, while this type of error was alleviated in the new model. Scale bar: 2 µm. (D) The automatic analysis of GFP-Atg19 targeting in the WT and 7 atg KO strains. (E)
Cells with accumulated or dispersed GFP signals inside their vacuoles were manually labelled as positive or negative cells, respectively. Scale bar: 5 µm. (F) The
accuracy of the recognition of disintegrating autophagic bodies based on manually labelled atg15Δ and atg22Δ mutant cells. (G) The automatic analysis of the
autophagic-body breakdown in the WT and 8 atg KO strains.
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images by judging whether GFP signals could be identified within
the vacuole. Using this dataset, we directly inputted the 48 images
into DeepPhagy and calculated an AUC value as 0.9044 (Figure
7C). We carefully checked the computational results and found
that a considerable proportion of the cells containing large GFP
puncta associated with the vacuolar membrane were mistakenly
recognized as positive cells (Figure 7C). Thus, we re-trained a new
model using the labelled cells and achieved a 10-fold cross-
validation AUC score of 0.9388 (Figure 7C). This new model
was incorporated into DeepPhagy as an additional program called
‘GFP-Atg19’. Using this program, we analyzed the 432 images and
found that the deletion of ATG1 or ATG17, but not ATG13,
significantly blocked the vacuolar targeting of GFP-Atg19
(Figure 7D). We also observed that the loss of Atg21,
a phosphoinositide binding protein required for lipidation and
localization of Atg8 at the PAS [41], considerably decreased GFP-
Atg19 delivery (Figure 7D).

It was previously reported that Atg15, but not Atg22, is
crucial for the disintegration of autophagic bodies within the
vacuole, with autophagic bodies accumulating in atg15Δ
strains to reduce the degradation and recycling of cytoplasmic
components [42,43]. Because the autophagic-body breakdown
phenotype was not considered in the original model of
DeepPhagy, we manually labelled 4,150 positive and 5,897
negative cells from 108 (6 × 3 × 3 × 2) GFP-Atg8 images of
atg15Δ and atg22Δ mutants by judging whether the GFP
signals were accumulated or dispersed inside the vacuole
(Figure 7E). We re-trained a computational model with a 10-
fold cross-validation AUC value of 0.9214 (Figure 7F) and
developed an additional program called ‘atg15/22Δ’ in the
DeepPhagy software package. Using the program, we re-
analyzed 486 (6 × 3 × 3 × 9) GFP-Atg8 images of the WT
and 8 atg KO strains and observed that only the deletion of
ATG15 significantly increased the accumulation of GFP-Atg8
within the vacuole (Figure 7E). It should be noted that GFP-
Atg8 molecules might not always be equally distributed inside
the vacuole and occasionally accumulated in a considerable
proportion of yeast cells. Thus, the results in KO mutants
should be carefully interpreted by comparing to WT cells.
Additional experimental approaches, such as electron micro-
scopy, should also be adopted for validation [42,43].

Discussion

Unlike cyclic biological processes, such as the cell cycle and
circadian rhythm, autophagy is a typical acyclic progressive
process with multiple steps, including autophagy initiation,
phagophore biogenesis and expansion, autophagosome for-
mation, autophagosome-lysosome fusion, and autophagic
lysosomal reformation (ALR) [15,44,45]. Quantitatively mon-
itoring and measuring autophagic activity in an accurate
manner is crucial for the identification of new regulators
involved in autophagy and provides a fundamental means
for elucidating the molecular mechanisms of autophagy.

To date, a variety of end-point measurements, such as the
Pho8Δ60 assay and the GFP-Atg8 cleavage assay, have been
well established for measuring autophagy in S. cerevisiae
[15,46]. After the elimination of first 60 amino acids at the
N-terminus, the Pho8Δ60 mutant, stays in the cytosol in its

inactive form, which is randomly engulfed by autophago-
somes and transported to the vacuole for activation upon
the induction of autophagy. Therefore, the resulting alkaline
phosphatase (ALP) activity of Pho8Δ60 can be used as
a sensitive and quantitative readout for bulk autophagy func-
tion [47]. However, the inevitable background signal and the
time consuming cell lysis procedures have limited its applica-
tion in detecting very low levels of autophagy and in quick
functional screening experiments. In the Pho8Δ60 assay, only
non-selective autophagy is measured, whereas GFP-Atg8
quantification is a sum of all of the different autophagy path-
ways [15,46]. With an N-terminally tagged GFP, the ratio
between free GFP and total GFP can be quantified by immu-
noblotting to measure the autophagic flux, or the GFP signal
can be directly visualized by fluorescence microscopy to
monitor the vacuolar delivery of Atg8 [6,48–51]. The former
is actually a semi-quantitative approach due to the intrinsic
nature of immunoblotting, whereas with the latter assay GFP
quenching can occur in acidic environments. Since the yeast
vacuole is not as acidic in contrast to the mammalian lyso-
some (generally ~ pH 6.2 vs. 4.8), the GFP-Atg8 fluorescence
assay is still a sensitive and efficient assay to minor yeast
autophagy activity [51].

Previously, the labelling of autophagic or non-autophagic
cells in GFP-Atg8 fluorescent images was conducted by eye to
arbitrarily judge whether GFP signals could be observed within
the vacuole. Indeed, such a procedure is tedious and labor-
intensive. Additionally, since different scientists might have
different experience with the discrimination of autophagic phe-
notypes, the manual labelling results might be difficult to
reproduce exactly by other researchers. In this regard, the
automatic identification of autophagic phenotypes from fluor-
escent images by computational algorithms can provide
a highly efficient approach for functional screenings. In addi-
tion, the results can be easily reproduced if the parameters in
the computational models are pre-configured. In contrast with
the CellProfiler tool implemented in conventional machine
learning algorithms, DeepYeast, DeepLoc and our DeepPhagy
trained models under deep learning frameworks and achieved
much better performance [12,28,29]. In deep learning algo-
rithms, stacking more layers does not always equate to better
performance. Decreases in training accuracy might occur in
deeper networks due to vanishing/exploding gradients that
hamper convergence [52,53]. Thus, choosing an appropriate
network framework is crucial to obtain superior performance
and this mainly depends on the scientific question. Because
DeepYeast and DeepLoc were constructed for classifying multi-
ple subcellular localizations of GFP-tagged proteins in
S. cerevisiae, the network architecture was more complicated
with 11-layer CNNs [28,29]. In contrast, DeepPhagy is a binary
classifier to label autophagic and non-autophagic cells and
5-layer CNNs were enough to achieve better accuracy com-
pared to DeepYeast and DeepLoc (Figure 2A,B).

Our DeepPhagy 1.0 is a starting point for the application of
deep learning-based computer vision approaches in the analysis of
autophagic phenotypes from fluorescent images. For future plans,
there are still a number of important studies that need to be
performed. First, although we tried our best to manually label
8,078 autophagic and 18,493 non-autophagic yeast cells from
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GFP-Atg8 fluorescence images, the benchmark dataset was far
from being ‘big data’. Undoubtedly, a larger training dataset will
lead to a higher prediction accuracy and we will be continuously
conducting manual labelling to increase the training set. Second,
the autophagic process is highly dynamic and complicated and the
vacuolar delivery of GFP-Atg8 is only reflective of one type of the
varied autophagic phenotypes. In addition to GFP-Atg8, we also
analyzed 3 additional types of autophagic phenotypes, including
Atg1-GFP vacuolar delivery, GFP-Atg19 vacuolar targeting, and
the disintegration of autophagic bodies. Although DeepPhagy
could be used directly formonitoring Atg1-GFP targeting, specific
models were re-trained using newly labelled datasets for an accu-
rate recognition of GFP-Atg19 vacuolar delivery and the autop-
hagic-body breakdown. Thus, for the analysis of autophagic
phenotypes different from the vacuolar targeting of GFP-Atg8,
we suggest that high-quality datasets need to be provided through
manual labelling for training more accurate models. Third, CNN
is only the one type of the various deep learning algorithms and
we plan to test other algorithms to improve the accuracy in the
near future. In the current release of DeepPhagy only individual
images can be analyzed, however, it will be more convenient if
videos can be directly processed. In addition, the computational
methods in DeepPhagy can be extended to count GFP-LC3B
puncta in mammalian cells, which enables a much broader usage.

Materials and methods

Yeast strains and plasmids

The wild-type haploid S. cerevisiae yeast strain used in this
study was BY 4741 (MATa his3Δ leu2Δ met15Δ ura3Δ). KO
mutants in the BY4741 background were bought from
Thermo Fisher Scientific (Table S1) [54]. Plasmids expressing
GFP-Atg8, Atg1-GFP and GFP-Atg19 were gifts from Prof. Li
Yu (Tsinghua University).

Culturing of yeast cells

Standard protocols were used for yeast manipulation [7–9]. Cells
were inoculated into either YPD (Sangon Biotech, A507022) or
SD medium (0.67% yeast nitrogen base w/o amino acids
[Becton, Dickinson and Company, 291920], 0.5% ammonium
sulphate and 2% glucose [VWR Life Science AMRESCO® bio-
chemicals, 0188]) with appropriate supplements and incubated
overnight. For nitrogen-starvation conditions, the cultures were
then shifted to SD-Nmedium (2% glucose, 0.17% yeast nitrogen
base w/o amino acids and ammonium sulphate [Becton,
Dickinson and Company, 233520]).

Fluorescence microscopy

Yeast cells were grown to OD600 = 0.8–1.0 in appropriate selective
medium. To visualize vacuoles with FM4–64, cells were incubated
in rich medium containing 25 µg/ml FM 4-64 (Life Technologies,
T3166) for 25 min, then chased for 40 min at 30°C and shifted to
SD-N medium for various lengths of time [55]. The cells were
observed at room temperature using an Olympus FV-1000 con-
focal microscope. For each of theWT and 35 atgKO yeast strains,
the autophagic phenotype was monitored and imaged 3 times at

different microscopy regions, at 1 h intervals from 0 to 5 h. The
experiments were independently repeated 3 times.

Image pre-processing

The original confocal microscopy images had a resolution of
1024 × 1024 pixels and it was difficult for Java 1.8 to rapidly
process and analyze such large images due to the maximum
memory supported by Java Runtime Environment (JRE).
Using a Java smooth function, getScaledInstance, we first
scaled all fluorescent images to 650 × 650 pixels, which effi-
ciently reduced the computational time without influencing
the fidelity. As previously described, color inversion was con-
ducted to enhance the image contrast [24]. The RGB images
were then converted to grayscale, and the Sobel operator,
a commonly used algorithm for calculating the image gradi-
ent, was applied to sharpen the cell edges [22,24]. For the
segmentation of candidate cell regions, a multi-level Otsu
thresholding algorithm was used to convert gray images to
binary images [23,24]. Then, we performed a series of mor-
phological operations on the binary images including erosion,
dilation and filling holes, to remove isolated pixel noise,
smooth irregular borders and fill holes, respectively [24]. To
further separate the clustered cells, we applied a distance
transformation to calculate the distance of each pixel from
the nearest candidate region and removed peripheral contours
that might be adhesion targets among the candidate cells [25].
Finally, a seeded region growing (SRG) algorithm was used to
label the maximum gradient regions and the weighted cen-
troid of each region was calculated as the cell centre [26].
Then, individual candidate cells were cropped to a size of
61 × 61 pixels centred on their weighted centroids. Because
parts of other cells might also be cropped, we defined the ROI
of a cell using a circle around the weighted centroid with
a fixed radius of 20 pixels. For each cell image, pixels out of
the ROI were normalized to RGB (0, 0, 0) as the black
background.

To determine the parameters (p1, p2,…, pn) in the full image
pre-processing procedure, we used the following equation:

ε ¼ argmin
p1;p2;...;pn

N � N0j j þM
N

Here, N is equal to 26,571, which is the number of manually
labelled yeast cells from 216 fluorescent images;N’ is the number
of computationally labelled cells andM is the number of labelled
non-cell regions. In this study, the Quantum-behaved Particle
Swarm Optimization (QPSO) algorithm was adopted to mini-
mize the ε value to 5.49% to obtain the optimal parameters [27].

Training deepphagy

Caffe is an open source deep learning framework originally writ-
ten in C++ (http://caffe.berkeleyvision.org/). Here, we re-
implemented the core libraries of Caffe in Java and then developed
a 5-layer CNN to recognize the autophagic phenotypes from
fluorescent images of yeast cells. First, a batch of cell images
were inputted in 3 connected convolutional blocks, each contain-
ing a convolution layer and a pooling layer. Specifically, for each
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convolution layer, a ReLU activation function was applied to
avoid gradient diffusion and an LRN function with a local size
of 3, an alpha value of 0.00001 and a beta value of 0.95 was
introduced to improve the generalization capacity. There were
25, 50 and 100 Gaussian filters applied in convolution layer 1, 2
and 3, respectively, with a standard deviation of 0.01. For each
layer, the kernel size was 3 × 3 pixels, with a stride of 1 pixel.
A max pooling strategy was used to downsample feature repre-
sentations and reduce dimensionality in the 3 pooling layers,
using the kernel size of 3 × 3 pixels, with a stride of 2 pixels.
After the convolutional blocks, 2 fully connected layers were
implemented for classifying the inputted fluorescent images. To
prevent neural networks from overfitting, a dropout method with
a threshold value of 0.5 was applied before the 2 fully connected
layers. For the classification, the output was implemented with
a SoftMax loss function to calculate the probability. As previously
described, a per-pixel training set mean was calculated and sub-
tracted for each image before use [29]. The standard learning
method of stochastic gradient descent (SGD) was adopted with
a momentum of 0.9, whereas the learning rate followed a sigmoid
decay policy with an initial value (base_lr) of 0.01, a weight decay
of 0.0005, a gamma value of 0.05, a power of 0.75, and a mini-
batch size of 10. The models were trained for 50,000 iterations.

Performance evaluation and comparison

To evaluate the prediction accuracy and robustness of
DeepPhagy, 5 standard measurements of Ac, Sn, Sp, Pr and
MCC were adopted and calculated as follows:

Ac ¼ TP þ TN
TP þ TN þ FP þ FN

Sn ¼ TP
TP þ FN

Sp ¼ TN
TN þ FP

Pr ¼ TP
TP þ FP

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp

For the comparison of DeepPhagy with other existing tools, the
same training dataset was used. First, we trained an RF classifier
implemented in the Python scikit-learn package on features that
were extracted using a CellProfiler pipeline [30]. In total, there
were 102 different features consisting of intensity, geometric, and
texture measurements of images on different scales. The max-
imumdepth of the tree was determined as 15, while theminimum
number of samples required to split an internal node was selected
as 10. The minimum number of samples required to be at a leaf
node was also chosen as 10. The 11-layer CNNs of DeepYeast and
DeepLoc were directly used for training [28,29]. To evaluate

feature representations learned by other tools, we visualized 102
features extracted from CellProfiler and 512 features retrieved
from the second fully connected (fc_2) layers of both DeepYeast
and DeepLoc [31].

The global threshold for high-throughput analysis

Given a series of microscopy images (i1, i2, …, in), single cells
will be cropped, and a probability score will be computed by
DeepPhagy for each cell image. Thus, under a certain prob-
ability as the threshold, the SD value can be calculated as
follows:

SD ¼
P

i1;i2;...in
DP �MPj j þ DN �MNj jð Þ

P
i1;i2;...in

MPþMNð Þ
For each microscopy image, MP and MN represent manually
labelled autophagic and non-autophagic cells, whereas DP and
DN refer to autophagic and non-autophagic cells computationally
recognized by DeepPhagy, respectively. We calculated SD values
under different probabilities ranging from 0 to 1, with a 0.01
increase per step. The probability with the minimal SD value was
selected as the global threshold for the large-scale analysis.

Immunoblotting analysis

The samples for immunoblotting analysis were prepared by
an alkaline extraction method as described previously [56].
Urea-containing SDS-PAGE was performed to separate full
length GFP-Atg8 from its free GFP form. In this study, we
used IRDye_800CW donkey anti-mouse IgG (H + L) (LI-
COR Biosciences, 926–32212) as secondary antibody and an
Odyssey_CLx imaging system to capture the immunoblotting
results. The mouse antibody against GFP (11814460001) was
purchased from Roche and the mouse antibody against Pgk1
(ab113687) was purchased from Abcam. Image Studio soft-
ware was applied to analyze the immunoblotting results. Each
experiment was repeated 3 independent times.

Data availability

All original and DeepPhagy-labelled images of WT and atg
KO S. cerevisiae mutants are freely available for download at
http://deepphagy.biocuckoo.org/dataset.php/. The benchmark
datasets, including the original and manually labelled images
for training and testing, are also available for download.

Statistical analysis

Experimental data were shown as mean ± SD (Figures 4C, 5C and
7B,D,G). The statistical comparison of the autophagy activities at
each time interval was pairwisely conducted for theWT and 35 atg
KO mutant strains, by using two-tailed t-tests (Benjamini-
Hochberg adjusted p-value < 0.01).
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