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ABSTRACT

Small ubiquitin-like modifiers (SUMOs) regulate a va-
riety of cellular processes through two distinct mech-
anisms, including covalent sumoylation and non-
covalent SUMO interaction. The complexity of SUMO
regulations has greatly hampered the large-scale
identification of SUMO substrates or interaction part-
ners on a proteome-wide level. In this work, we de-
veloped a new tool called GPS-SUMO for the predic-
tion of both sumoylation sites and SUMO-interaction
motifs (SIMs) in proteins. To obtain an accurate per-
formance, a new generation group-based predic-
tion system (GPS) algorithm integrated with Parti-
cle Swarm Optimization approach was applied. By
critical evaluation and comparison, GPS-SUMO was
demonstrated to be substantially superior against
other existing tools and methods. With the help of
GPS-SUMO, it is now possible to further investigate
the relationship between sumoylation and SUMO in-
teraction processes. A web service of GPS-SUMO
was implemented in PHP + JavaScript and freely
available at http://sumosp.biocuckoo.org.

INTRODUCTION

By covalently modifying specific lysine residues in protein
substrates, or by non-covalently interacting with proteins,
small ubiquitin-like modifiers (SUMOs) play an essential
role in the regulation of a variety of biological processes, in-
cluding gene expression, DNA repair, chromosome assem-
bly, and cellular signaling (1-4). Along with the accumulat-
ing research on its biological functions, there are abundant
evidences that the aberrance of SUMO regulation is highly
associated with various diseases, such as neurodegenerative
diseases (5,6), congenital heart defects (7), diabetes (8) and
cancers (9). Therefore, the identification of SUMO modifi-

cation sites and SUMO-interaction motifs (SIMs) in pro-
teins is fundamental for understanding the biological func-
tions and regulatory mechanisms of SUMOs, and provides
potential targets for further diagnostic and therapeutic con-
sideration.

The process of proteins being covalently modified by
SUMOs is called as sumoylation, which is one of the most
important and ubiquitous post-translational modifications
(PTMs) of proteins (10,11). Previously, experimental stud-
ies suggested that most of sumoylation sites follow a canoni-
cal consensus motif of §y —-K—X-E ({s, a hydrophobic amino
acid, such as A, I, L, M, P, F, V or W; X, any amino acid
residue) (12,13). However, our collective experimental data
shows that approximately 40% (400 out of 983 sites) of
known sumoylation sites do not conform to the above mo-
tif (Supplementary Table S1 and 3). In this regard, the cur-
rent understanding of sumoylation recognition is still inad-
equate.

Recently, it was reported SUMOs can non-covalently
interact with other proteins through targeting specific
SIMs, which were also called as SUMO-binding motifs
(SBMs) (14-16). For example, the SUMO interaction
of Daxx modulates its sumoylation and is critical for
targeting Daxx to PML oncogenic domains (PODs) for
the transcriptional repression (17). Also, the non-covalent
interaction of SUMO-2 and CoRESTI, but not the
sumoylation, is essential for organizing the transcriptional
corepressor complex of LSDI1/CoRESTI/HDAC (18).
Previously, a series of SIMs were experimentally identified
(14,15,18-22). In early 2000, Minty et al. reported that
the X{4,13}LSX[ST] motif appeared to be crucial for the
SUMO interaction (19). However, four years later, Song
et al. refuted the dominant role of serine residue in the
SIMs (20), and discovered a new hydrophobic core motif
of [VIIX[VI][VI] as a bona fide SIM (21). Compared to
diverse ubiquitin-binding domains (UBDs) that commonly
interact the B-sheet around Ile44 of ubiquitin (23,24), Song
et al. demonstrated a novel mechanism for SUMO interac-
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tion, by forming an extended structure to bind between the
a-helix and a B-strand of SUMO-1 (21). Thus, an in-depth
study of SIMs can be not only helpful for distinguishing
the distinct regulations between SUMOs and ubiquitin,
but also provide implications for identifying non-covalent
interactions of other ubiquitin-like (UBL) proteins. Later
studies (14,15) confirmed the importance of consecutive
hydrophobic residues, and raised a number of other SIMs,
such as [VILMFWA]VILMFWA]XSX|[ST][DE][DE]DE]
and KX{3,5{VI[IL][ILIXXX[DEQN][DE][DE],
can also facilitate the SUMO interaction. In 2009,
Ouyang et al. showed that an unusual type of SIM
as [IVL][DEJIVL][DEJIVL] mediates the SUMO-
2 specific interaction in several proteins (18). Sub-
sequently, three additional types of SIMs were de-
scribed as [PILVM][ILVMIX[ILVM][DSE>]{3},
[PILVM]ILVM]DLT and [DSE]{3}[ILVM]X[ILVMF]{2}
by Vogt et al. (22). Although nearly ten types of SIMs
were experimentally identified, each one can only recall a
small proportion of known SIMs, and no one can present
a major profile for SIMs.

Because of the complicated features, systematic analysis
of sumoylation and SUMO interaction is still a great chal-
lenge. In contrast with labor-intensive and time-consuming
experimental identifications, in silico prediction of sumoyla-
tion sites and SIMs in proteins can greatly narrow down the
number of candidates, and generate helpful information for
further verification. In the past decade, our group has made
great efforts in developing a series of tools for predicting
protein sumoylation sites (25,26). In early 2006, we released
an online service of SUMOsp based on the first-generation
Group-based Prediction System (GPS) algorithm (25). Sub-
sequently, a matrix mutation (MaM) method was inte-
grated into SUMOsp to upgrade the performance and a
new version of SUMOsp 2.0 was introduced (26). In ad-
dition, other researchers have also constructed several reli-
able tools for the prediction of sumoylation sites, including
SUMOplot (http://www.abgent.com/sumoplot), seeSUMO
(27), SUMOpre (28) and SUMOhydro (29). However, these
tools only focused on the sumoylation prediction, while a
predictor for SIMs is still need to be developed.

In this work, by improving the prediction algorithm and
adding the novel SIM prediction feature, we developed
an updated version of SUMOsp and renamed it as GPS-
SUMO. From the scientific literature, we manually collected
983 sumoylation sites in 545 proteins and 137 known SIMs
in 80 proteins as the non-redundant data sets, respectively.
Subsequently, the fourth-generation GPS algorithm inte-
grated with the PSO (30,31) method was employed for train-
ing and predicting. For convenience, a user-friendly web in-
terface was developed using PHP + JavaScript, and is freely
available at http://sumosp.biocuckoo.org.

IMPLEMENTATION

By searching the scientific literature (published before
September 2013) in the PubMed with the keywords of
‘SUMO?’, ‘sumoylation’ and ‘sumoylated’, we updated our
previous training data set. The latest data set contained
1059 sumoylation sites in 594 proteins and 151 SIMs in 88
proteins. An online database of these experimentally ver-

ified sites was then developed and the intact annotations
from UniProt and NCBI were integrated. To avoid over-
estimation of the prediction accuracy, the redundant sites
should be removed, and the CD-HIT (32) with a threshold
of 40% sequence identity was used to single out homologous
proteins. If two proteins were found to be modified at the
same position and to have more than 40% sequence iden-
tity, only one of the two proteins was preserved. In partic-
ular, 71 sumoylation sites were randomly picked from the
latest collected data set to construct an additional testing
data set. Due to the data limitations, an additional testing
data set for SUMO interaction was not constructed. Finally,
912 sumoylation sites in 510 protein (Supplementary Table
S1) and 137 SIMs in 80 proteins (Supplementary Table S2)
were retained as the non-redundant training data sets.

In GPS-SUMO, the fourth-generation GPS algorithm
was applied to predict the potential sumoylation sites and
SIMs. As previously reported, consecutive hydrophobic
residues are crucial for the non-covalent SUMO interaction
(14,15). Based on the experimental observations, we sum-
marized a hydrophobic motif of [TVL]{3,5} from the exper-
imentally verified SIMs. Only 5 (~3.6%) of 137 known SIMs
did not follow this pattern (Supplementary Table S2). This
motif was then integrated into the GPS algorithm to filter
potentially false positive hits for the SIMs prediction. To en-
hance the prediction accuracy, the GPS algorithm adopted
an additional procedure with four sequential training steps:
k-means clustering, motif length selection (MLS), weight
training (WT) and matrix mutation (MaM) (33). In the pre-
vious version (33), WT and MaM were implemented in a
random mutation algorithm that required a long time for
training and frequently resulted in a non-convergent result.
Therefore, in the fourth-generation GPS algorithm, the Par-
ticle Swarm Optimization (30,31) algorithm was integrated
to accelerate the training processes of WT and MaM steps
and greatly improve the prediction performance. Before de-
scribing the PSO improvement, we re-illustrated the WT
process as shown in Equation (1):

w; =14 Aw; )

The w; was the scoring weight and Aw; represented the
numeric changes in the scoring weight after the training pro-
cess. The WT process was aimed at finding a set of Aw; with
the optimal performance. Similarly, the MaM process can
also be described as shown in Equation (2):

S(a, b) = Score(a, b) + AS(a, b) 2)

The S(a,b) was the optimal substitute score for an amino
acid pair of @ and b, while S(a,b) was the substitute score in
the BLOSUMG62 matrix. The AS(a,b) represented the nu-
meric changes in the substitution score for an amino acid
pair of a and b. Thus, the MaM approach sought a set
of AS(a,b) that maximized the prediction performance. In
the first step of PSO, a population array of particles with
random current positions and velocities was initialized. For
each particle, the leave-one-out (LOO) validation was used
to evaluate the prediction performance in the current posi-
tion. In this case, the randomly generated Aw; and AS(a,b)
were directly assigned to the current position. Next, the
particles in the population communicated with each other
through a neighborhood structure with a ring topology.
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Guided by the best position found in a specific neighbor-
hood, a particle moved to a new position that much closer
to the globally optimal one. By iteratively performing the
above steps until a convergence criterion was met, an opti-
mized solution for WT and MaM was achieved and a more
accurate predictive model was obtained in GPS-SUMO.
Also, the training efficiency of GPS-SUMO was consider-
ably improved. More details on the fourth-generation GPS
algorithm were provided in the Supplementary Methods.

To construct the online service of GPS-SUMO, we
developed an easy-to-use web interface using PHP and
JavaScript. For convenience, we tested the online service on
a variety of internet browsers, including Internet Explorer,
Mozilla Firefox and Google Chrome. To support the large-
scale prediction, stand-alone packages were also developed
in Java SE 6 and supported by Windows, Linux and Mac
OS.

RESULTS

For the preparation of training data sets, we took known
sumoylation sites as the positive dataset, while all other
non-sumoylated lysines in the same substrates were taken
as the negative dataset. Similarly, the experimentally iden-
tified SIMs were regarded as positive data, while all other
unidentified SIMs following the [IVL]{3,5} motif in the
same proteins were taken as negative data. More details
were shown in Supplementary Methods. Totally, the non-
redundant training data set of sumoylation included 912
positive sites and 24491 negative sites (Supplementary Table
S1), and ~60% of all known sites are consensus sites (Sup-
plementary Figure S1A). In SUMOsp 2.0, we only clas-
sified known sumoylation sites into two clusters, includ-
ing the consensus group with sites following the { —-K—-X—
E motif and the non-consensus group (26). In this work,
we further used the k-means clustering approach to group
non-consensus sites into two clusters, and demonstrated
that such a procedure considerably improved the prediction
performance. More clusters will result in fewer number of
non-consensus sites in each cluster, and make the predictive
model unstable. The sequence logos were illustrated by We-
blogo (34) for each cluster (Supplementary Figure S1). For
the two non-consensus groups, one cluster considerably en-
riches sites following the s —K—X-D motif (Supplementary
Figure S1B), whereas the sequence profile is ambiguous for
the other cluster (Supplementary Figure S1C). For SUMO
interaction, the training data set contained 137 positive sites
and 1699 negative sites.

To evaluate the prediction performance of GPS-SUMO,
we performed the self-consistency validation (Self), LOO
validation and n-fold cross-validations (n-fold) of the train-
ing data set. For each validation, the sensitivity (23), speci-
ficity (Sp), accuracy (Ac), Mathew correlation coefficient
(MCC) and precision (Pr) were calculated. The receiver
operating characteristic (ROC) curves were drawn. Also,
the values of area under the curve (AUC) were calculated.
For sumoylation site prediction, the AUC values of Self,
LOO, 4-, 6-, 8- and 10-fold validations were 0.8779, 0.8754,
0.8673, 0.8687, 0.8726 and 0.8746, respectively (Figure 1A).
Also in the SIM prediction, the AUC scores were calculated
as 0.9737 for Self, 0.9729 for LOO, 0.9510 for 4-fold, 0.9529
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Figure 1. Performance evaluation of GPS-SUMO. (A) The performance
evaluation for the prediction of sumoylation sites. The Self, LOO and
n-fold validations were carried out. (B) The performance evaluation for
the prediction of SIM. (C) A performance comparison among GPS-
SUMO, SUMOsp 2.0 and seeSUMO. The algorithms of SVMs and RF in
seeSUMO were separately validated and compared. The LOO validation
was carried out in this comparison. (D) A further evaluation of the sumoy-
lation prediction. An additional test data set was applied to perform this
evaluation.

for 6-fold, 0.9625 for 8-fold and 0.9633 for 10-fold valida-
tions (Figure 1B). The similar results of different valida-
tions demonstrated that GPS-SUMO is a stable and robust
prediction tool. Based on the above evaluation, the three
thresholds of high, medium and low stringency were chosen
for GPS-SUMO. In order to balance the prediction perfor-
mance, the medium stringency was selected as the default
threshold.

In order to demonstrate the superiority of GPS-SUMO,
we compared the prediction performance of GPS-SUMO
with SUMOsp 2.0 and other existing tools or methods. Be-
cause SUMOsp 2.0 was demonstrated to be better than
SUMOplot and SUMOpre (26), and SUMOhydro (29) did
not support the batch prediction for multiple sequences,
here we only compared GPS-SUMO with a recently re-
leased predictor of seeSUMO (27). To avoid any bias, the
same training data set used in GPS-SUMO was adopted in
SUMOsp 2.0 and seeSUMO. For comparison, the LOO val-
idation was carried out, and the ROC curves were plotted
in Figure 1C. In our results, the AUC values were calculated
as 0.8754 for GPS-SUMO, 0.8467 for SUMOsp, 0.8297 for
the seeSUMO with the Support Vector Machines (SVMs)
algorithm and 0.8007 for the seeSUMO with the Random
Forest (RF) algorithm, respectively (Figure 1C). Thus, the
GPS-SUMO exhibited superior than other tools, and the
PSO algorithm did increase the prediction accuracy. For
SUMO interaction, a comparison was carried out between
the GPS-SUMO and other experimentally verified motifs
(Table 1). We fixed the Sp value of the GPS-SUMO to com-
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Table 1. Performance comparison of GPS-SUMO with known motifs for predicting SIMs

Motif?* Motif performance GPS-SUMO performance
Ac Sn Sp mcc Pr Ac Sn Sp MCC Pr

Motif 1 86.34% 17.88% 87.30% 0.0182 1.94% 87.34% 92.05% 87.30% 0.2028 5.25%
Motif 2 98.63% 1.99% 99.99% 0.1207 75.00% 99.26% 3.31% 99.99% 0.1528 71.43%
Motif 3 98.46% 19.87% 99.57% 0.273 39.47% 99.29% 64.24% 99.56% 0.5784 52.72%
Motif 4 97.74% 47.02% 98.45% 0.3644 38.82% 99.24% 72.19% 99.45% 0.5972 50.00%
Motif 5 98.59% 1.32% 99.96% 0.0641 33.33% 99.28% 10.60% 99.96% 0.2639 66.67%
Motif 6 98.62% 3.31% 99.96% 0.1332 55.56% 99.28% 10.60% 99.96% 0.2639 66.67%
Motif 7 98.62% 8.61% 99.89% 0.2076 52.00% 99.29% 20.53% 99.89% 0.3472 59.62%
Motif 8 98.70% 8.61% 99.97% 0.262 81.25% 99.28% 10.60% 99.96% 0.2639 66.67%
Motif 9 98.62% 6.62% 99.92% 0.1832 52.63% 99.29% 16.56% 99.92% 0.3193 62.50%

aMotif 1: X{4,13}SX[ST]; Motif 2: [VILMFWA][VILMFWA]XSX[ST|[DE]IDE][DE]; Motif 3: [VIIX[VI][VI; Motif 4: [IV]IVIX[IVL]; Mo-
tif 5 KX{3,5}VI[ILJILIXXX[DEQN]DE][DE]; Motif 6: [IVLIDEJIVLI[DEJIVL]; Motif 7: [PILVM][ILVMIX[ILVM][DSE>]{3}. Motif 8:
[PILVM][ILVM]DLT; Motif 9: [DSE]{3 }[ILVM]X[ILVMF]{2}. For the comparison, we fixed the Sp values of GPS-SUMO to compare the Sn scores.

Table 2. Known phosphorylation sites in adjacent regions of known SIMs and negative peptides following the [[VL]{3,5} motif

Flanking Known SIMs [IVL]{3,5} negative®

Phos.P Other® Phos. Other P-valued
(5,9) 20 117 1649 7.23E-12
(10,10) 27 110 1606 8.90E-11
(15,15) 30 107 134 1565 3.18E-08

4The negative data set with peptide following the [IVL]{3,5} motif.

YThe number of SIMs with at least one phosphorylation site in flanking regions.

¢The number of SIMs without any adjacent phosphorylation sites.
dThe P-value was calculated with the Chi-squared test.

pare the Sn and Ac scores with these motifs. Obviously, the
GPS-SUMO generate much better performance than the
motifs (Table 1).

To further evaluate the accuracy of GPS-SUMO, an ad-
ditional testing set was used. This test set contained 71 posi-
tive sumoylation sites and 1376 negative sites from the most
recently collected data set (Supplementary Table S3). Due
to the data limitation, an additional data set for SUMO
interaction prediction was not available. In Figure 1D, the
ROC curve of the LOO validation was drawn and the AUC
was calculated as 0.8629. Thus, our results suggested that
the GPS-SUMO is still robust and accurate for the predic-
tion of new data.

USAGE

The online service of GPS-SUMO can predict both sumoy-
lation sites and SIMs in a convenient manner (Figure 2A).
In the console panel, a drop-down list was provided for
selecting different prediction type. Also, an example but-
ton was provided. Two threshold panels for sumoylation
and SUMO interaction prediction are located in the bottom
left corner. Different prediction thresholds can be easily se-
lected from the corresponding drop-down lists.

Input description

In the web server page of GPS-SUMO, users can input one
or multiple protein sequences with FASTA format in the
text-box or upload a FASTA format file via the file selec-
tion dialog box. In order to guarantee a safe run of our web
server, a maximal file size of 2M is allowed to be uploaded

A

Enter sequence(s) in FASTA format

>GINS4

EIVE: LEEMEENLRRAKREDLKVSIHQMEMERIRYVLS A

SYLRCRLMKIERFFFH! SPEEL YLEN LFRAVPKEDLDSYVFLRVRERQE

NILVEFDTDEQRDYVIDLEKGSQHLIRYKT TAPLVASGRVQLT

[>RNF111

ISQWT PEYNELYTLKVDMKSE I PSDAPKIQESLKGILLERER]
TLGLROHLG

NCVEEN|
SHKWPRTETE SVSGLIMKRFCLEGSSLRRLFCRKRFVKNNS SORTQROKERTL
TEGEELL IDEDVVVIEASSTPQVIANEEINV T
EPRNRSRISTVIQPLRQNAAEVVDLTVDEDERTVVE INNSNPSTSEQA TSSQPSTVSETSATLY:
T Q

REPQVORPCGAN! ISYHEQORLFVDLSMSC Hi FHGRSAFDECCEVSSSRARIFGHORARRAFSQFLSSIDGYGSSMVAQED
[POPPPOFSLSSC EPYASLIRPLEEQASACPHSHGNPPPQ 1PHPVEAFHSQISSH. HLASTAAPI

Or, upload file(<2M) Browse..
Sumoylation Threshold SUMQ Interaction Threshold Console
Both ~| [ Example | Clear | Submit

Figure 2. A snapshot of the GPS-SUMO web server. (A) As an example,
the sequences of DNA replication complex GINS protein SLD5 (GINS4)
and E3 ubiquitin-protein ligase Arkadia (RNF111) were inputted into
GPS-SUMO. The sumoylation sites and SIMs were predicted using the
medium threshold. (B) The prediction result of these two protein se-
quences. The information on the FASTA title, modified position, modi-
fied peptide, predicted score, prediction cutoff and regulation type are pre-
sented.

in each case. For large-scale predictions, a standalone pro-
gram is available on the download page.
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Output description

All of the prediction results are presented in a tabular form
containing the information of FASTA title, modified po-
sition, modified peptide, predicted score, prediction cutoff
and modified type (Figure 2B). In the position column, the
precise sumoylation sites as well as the SIMs are shown.
Also, the predicted peptide for sumoylation or SUMO inter-
action is displayed in the peptide column with the sumoy-
lation site or SIM shown in red. The cluster score and its
corresponding cutoff are presented in the score and cutoff
column, respectively. In the last column, the category of the
SUMO regulation is indicated.

DISCUSSION

GPS-SUMO is a novel web server that can be used to
predict both covalent sumoylation sites and non-covalent
SIMs. With a new generation GPS algorithm integrated
with PSO method, the sumoylation site prediction perfor-
mance was greatly improved. Also, by integrating a core
hydrophobic motif of [TVL]{3,5}, GPS-SUMO achieves a
precise prediction on SIMs. Taken together, we propose that
GPS-SUMO will prove to be a highly useful web server in
SUMO modification research. Moreover, the capability for
predicting both sumoylation sites and SIMs in GPS-SUMO
makes it potentially valuable for the investigation of the re-
lationship between sumoylation and SUMO interaction.

During the training process, we classified all known
sumoylation sites into two groups including the consen-
sus group and non-consensus group based on the canoni-
cal motif of {y —-K—X-E. Although our algorithm generated
satisfying performance on the consensus group, the perfor-
mance for non-consensus group still remained to be im-
proved. Therefore, in the subsequent release, a much more
accurate GPS model will be applied in the prediction of the
non-consensus sumoylation sites. As previously mentioned,
the SIM has a distinct hydrophobic core. In this regard, a
scoring strategy reflecting amino acid hydrophobicity will
be further integrated to improve the accuracy of SIM pre-
diction in the near future.

Previous studies revealed that serine and threonine
residues are abundant in proximity to the hydrophobic core
of a subset of SIMs, and raised a concern that whether
phosphorylation plays an important role in the regulation
of SUMO-interacting activity (15,35). Indeed, the E3 lig-
ase PIASxa is phosphorylated in vivo at serines adjacent to
the hydrophobic core of the SIM, and the PIASxa phos-
phorylation modulates its interacting to SUMOI1 but not to
SUMO?2 (15). By searching several public databases of the
phosphorylation, including Phospho.ELM (36), Phospho-
SitePlus (37) and PhosphoGRID (38), we totally obtained
1016 non-redundant phosphorylation sites in 80 known
SUMO-interacting proteins. Then we looked through the
flanking regions such as (5, 5), (10, 10) and (15, 15) with
at least one phosphorylation site around known SIMs and
negative peptides following the [IVL]{3,5} motif (Table 2).
Using the Chi-Squared Test (Right-Tail) (39), we observed
that phosphorylation sites are significantly over-represented
in adjacent regions of known SIMs against negative pep-
tides (Table 2, P-value << 0.01). Totally, there were 20
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(14.6%) and 27 (19.7%) known SIMs with at least one phos-
phorylation sites in the adjacent regions of (5, 5) and (10,
10), respectively (Table 2). When the flanking region was ex-
tended to (15, 15), the number of SIMs with flanking phos-
phorylation sites was only moderately increased, while the
level of significance was decreased. In this regard, although
the phosphorylation information was not integrated into
GPS-SUMO, at least a known phosphorylation site in the
(10, 10) flanking region of the SIM can be a good indicator
for further identifying phospho-regulated SIMs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online, includ-
ing [1-06].
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