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The last decade has witnessed rapid progress in the identification of protein tyrosine nitration

(PTN), which is an essential and ubiquitous post-translational modification (PTM) that plays a

variety of important roles in both physiological and pathological processes, such as the immune

response, cell death, aging and neurodegeneration. Identification of site-specific nitrated substrates

is fundamental for understanding the molecular mechanisms and biological functions of PTN.

In contrast with labor-intensive and time-consuming experimental approaches, here we report the

development of the novel software package GPS-YNO2 to predict PTN sites. The software

demonstrated a promising accuracy of 76.51%, a sensitivity of 50.09% and a specificity of

80.18% from the leave-one-out validation. As an example application, we predicted potential

PTN sites for hundreds of nitrated substrates which had been experimentally detected in

small-scale or large-scale studies, even though the actual nitration sites had still not been

determined. Through a statistical functional comparison with the nitric oxide (NO) dependent

reversible modification of S-nitrosylation, we observed that PTN prefers to attack certain

fundamental biological processes and functions. These prediction and analysis results might be

helpful for further experimental investigation. Finally, the online service and local packages of

GPS-YNO2 1.0 were implemented in JAVA and freely available at: http://yno2.biocuckoo.org/.

Introduction

The 1998 Nobel Prize in Physiology or Medicine was awarded

to Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad

for their pioneering discovery of nitric oxide (NO) as a freely-

diffusible second messenger that regulates the production of

cyclic GMP (cGMP) in the cardiovascular system. Subsequent

studies showed that an interaction between excess NO, transition

metal centers and oxidants induces protein tyrosine nitration

(PTN).1–6 In NO metabolism, when oxidants such as super-

oxide radicals (O2
��) or hydrogen peroxide (H2O2) are in

transition metal centers (e.g., Fe2+), oxo-metal complexes as

well as carbonate radicals (CO3
��) are formed which oxidize

tyrosines to tyrosyl radicals, which further react with reactive

nitrogen species, such as the peroxynitrite anion (ONOO�)

and nitrogen dioxide (�NO2), to yield 3-nitrotyrosine (Fig. 1).4–6

As a ubiquitous and important post-translational modification

(PTM), PTN has been implicated in the regulation of protein

activity,7 epitope recognition,8 and histone modification.9

Furthermore, evidence suggests that PTN plays critical roles

in both physiological and pathological processes, including the

immune response, cell death, aging and neurodegeneration.1–3

Previously, it was widely accepted that PTN is an irreversible

event, because of the absence of denitration enzymes. However,

Gow et al. found that the nitrotyrosine epitope could be

removed in a concentration-, time-, and temperature-dependent

manner.10 Subsequent studies reported that PTN could be

reversibly regulated in the response to oxygen tension.11

The conventional experimental identification of PTN

substrates is inefficient, being both laborious and of low-

throughput.7,12 With the development of antibodies which

recognize nitrotyrosine, improved methods for the selective

enrichment of nitrotyrosine-containing peptides and the new

technology of mass spectrometry, the large-scale detection of

cellular nitrated proteins was introduced.13–15 Subsequently, a

number of studies systematically investigated the in vivo

nitrated proteins so as to provide further insight into the

biological roles of PTN.14,16–21 Initially, Souza et al. proposed

that there was no consensus sequence around the nitration

sites.22 Recently, Elfering et al. suggested a PTN substrate
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motif of [LMVI]-X-[DE]-[LMVI]-X(2,3)-[FVLI]-X(3,5)-Y

(where X is any amino acid and Y is the target tyrosine),

which can be generalized to H-X-[DE]-H-X(2,3)-H(2)-X(2,4)-

Y (whereH represents a hydrophobic residue, such as L, M, V,

I, P, A, F, or W).23 Although numerous studies have made

contributions to this area,15,16,18–21 it is nevertheless still

a great challenge to determine the mechanism of PTN.

Currently, in addition to the time-consuming and expensive

experimental methods, the development of computational

approaches has promoted discovery of the PTM sites, since

in silico prediction is able to rapidly generate useful information

for later experimental verification. Although there are B170

databases and computational tools developed for PTM

analysis (http://www.biocuckoo.org/link.php), a program

applicable to the prediction of PTN sites is still lacking.

In this work, we collected 1066 experimentally verified PTN

sites in 554 unique proteins from the scientific literature and

public databases (Table S1, ESIw). Previously, we developed

and improved the GPS (Group-based Prediction System)

algorithm to predict kinase-specific phosphorylation sites

and S-nitrosylation sites.24,25 Here, the latest GPS algorithm

of version 3.0 was applied to predict PTN sites. The leave-

one-out validation and 4-, 6-, 8- and 10-fold cross-validations

were adopted to evaluate the prediction performance

and system robustness. Comparative analysis showed the

performance of the GPS 3.0 to be promising, with an accuracy

of 76.51%, a sensitivity of 50.09% and a specificity of 80.18%.

The novel software package of GPS-YNO2 was then developed

to predict PTN sites. As a demonstration application, we also

collected hundreds of nitrated substrates from PubMed,

for which the bona fide nitrated tyrosines had yet to be

experimentally determined (Table S2, ESIw). We successfully

annotated 325 (B88%) of these proteins having at least one

potential PTN site. Furthermore, we systematically compared

PTN with another nitric oxide (NO) dependent modification

of S-nitrosylation through statistical analyses of their respective

gene ontology (GO) terms. It was observed that PTN prefers

to attack certain basic biological processes and functions.

These predictions and analyses will be useful in future experi-

mental investigation.

Methods

Data preparation

PubMed was searched with the keywords of ‘‘nitration’’ or

‘‘nitrated’’, followed by checking the scientific literature

published before July 1st, 2010. A dataset with 1223

experimentally verified PTN sites from 662 proteins were

collected. Furthermore, there are also PTN sites in previously

constructed public databases, such as dbPTM (50 sites in 39

proteins) and SysPTM (98 sites in 74 proteins).26,27 All of these

datasets were integrated with the protein sequences retrieved

from the UniProt database.28 For the prediction application

and functions survey, 370 nitrated substrates from large-scale

or small-scale studies were collected, for which the exact PTN

sites had not been previously determined (Table S2, ESIw).
As previously described,24,25 we regarded the nitrated

tyrosine (Y) residues as positive data (+), while other tyrosines

were taken as negative data (�). It is widely accepted that a

redundancy of homologous sites in the positive data (+) leads

to overestimated prediction. To avoid such overfitting, we

used CD-HIT to cluster the protein sequences,29 followed by

re-alignment with BLAST packages and manual check of the

proteins with Z 40% identity.30 The redundant PTN sites at

the same position in the homologous proteins according to the

alignment result were removed. Finally, the non-redundant

data set for training was constructed with 1066 positive sites

and 7684 negative sites from 554 unique substrates (Table S1,

ESIw). For comparison, the S-nitrosylation dataset was from

our previous work.24

The algorithms

For prediction of the PTN sites, we employed our recently

released GPS 3.0 (Group-based Prediction System) algorithm,

which had achieved great success in the prediction of protein

S-nitrosylation sites.24 Based on the hypothesis of similar

short peptides bearing similar biochemical properties,24,25 we

defined a nitration site peptide NSP(m, n) as a tyrosine (Y)

amino acid flanked by m residues upstream and n residues

downstream. Then we scored the similarity of two NSP(m, n)

peptides as:

SðA;BÞ ¼
X
�m�i�n

ScoreðA½i�;B½i�Þ

Score(A[i], B[i]) represented the substitution score of the two

amino acid of A[i] and B[i] in an amino acid substitution

matrix, e.g., BLOSUM62. If S(A, B) o 0, we simply redefined

it as S(A, B) = 0.

For the sake of better performance, we also introduced

several performance improvement processes, including

k-means clustering, motif length selection (MLS), weight

training (WT) and matrix mutation (MaM).

(1) k-means clustering. Given two NSP(m, n) peptides A

and B, the similarity was defined and measured as: s(A, B) =

Ns/N. The N is the number of all substitutions, whereas the Ns

is the number of conserved substitutions with Score(a, b) > 0

in the BLOSUM62 matrix. The s(A, B) ranges from 0 to 1.

Fig. 1 Biochemical processes of the endogenous NO source and PTN.
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Thus, the distance between them can be defined as: D(A, B) =

1/s(A, B). If s(A, B) = 0, D(A, B) = N. By exhaustive testing,

the k was roughly set to 5, while NSP(7, 7) was adopted. First,

five nitration sites from the positive data (+) were randomly

chosen as the centroids. Second, the other positive sites were

compared in a pairwise manner with the five centroids and

clustered into groups with the highest similarity values. Third,

the centroid of each cluster was updated with the highest

average similarity (HAS). The second and third steps were

iteratively repeated until the clusters did not change any

longer. After the five clusters for the positive sites had been

determined, we put each negative site into the cluster with

the HAS.

(2) Motif length selection (MLS). In this step, the optimized

combination of NSP(m, n) was determined for better

performance. The combinations of NSP(m, n) (m = 1,. . ., 30;

n = 1,. . ., 30) were extensively tested, while the optimal

NSP(m, n) for each cluster with the highest leave-one-out

performance was respectively selected. We fixed the Sp at

80% to compare Sn values.

(3) Weight training (WT). We updated the substitution

score between two NSP(m, n) peptides A and B as:

S0ðA;BÞ ¼
X
�m�i�n

wiScoreðA½i�;B½i�Þ

The wi is the weight of position i. Again, if S0(A, B) o 0, we

simply redefined it as S0(A, B) = 0. Initially, the w was defined

as 1 for each position. We randomly picked out the weight of

any position for +1 or �1, and adopted the manipulation if

the Sn value of the re-computed leave-one-out result with the

Sp fixed at 80% was increased. The process was repeated until

convergence was reached.

(4) Matrix mutation (MaM). As previously described,24,25

BLOSUM62 was chosen as the initial matrix, and the leave-

one-out performance was calculated. Subsequently, we fixed

the Sp as 80% to improve the Sn by randomly picking out an

element of the matrix for +1 or �1. The procedure was

terminated when the Sn value was not increased any further.

For comparison, the GPS 2.0 algorithm and PSSM algorithm

were also implemented. The GPS 2.0 algorithm was carried

out as previously described.25 For the PSSM algorithm,31 the

probabilities of twenty amino acids in the positive data (+)

and negative data (�) were calculated as P+ and P�. Then the

score of a given NSP(m, n) was calculated as:

Score½NSPðm; nÞ� ¼
X

1�i�mþn
log2ðPþ½i�=P�½i�Þ

Statistical analysis

In order to analyze the functional abundance and diversity of

PTN, we downloaded the gene ontology (GO) (06/29/2010)32

association files from the GOA database at the EBI

(http://www.ebi.ac.uk/goa). There are 18 262 human proteins

annotated with at least one GO term, with 408 annotated

nitration substrates. Here we defined:

N = number of proteins in human proteome annotated by

at least one GO term

n = number of proteins in human proteome annotated by

the GO term t

M = number of proteins in human nitrated substrates

annotated by at least one GO term

m = number of proteins in human nitrated substrates

annotated by the GO term t

Then the enrichment ratio of the GO term t was calculated,

while the hypergeometric distribution equation33 was used to

calculate the p-value as below:

Enrichment ratio ¼
m
M
n
N

p-value¼
Pn

m0¼m

M
m0

� �
N�M
n�m0

� �

N
n

� � ðEnrichment ratio� 1Þ; or

p-value¼
Pm
m0¼0

M
m0

� �
N�M
n�m0

� �

N
n

� � ðEnrichment ratioo1Þ

In this work, we only consider the over-represented GO

groups with Enrichment_ratio Z 1. From our previous

study,24 we also collected 396 human S-nitrosylated substrates

with at least one GO annotation. The statistical procedure was

also performed for the GO enrichment analysis of

S-nitrosylation.

For comparison of PTN with S-nitrosylation, we performed

the Yates’ Chi-square (w2) test with the 2� 2 contingency table

method.34

Performance evaluation

As previously described,24,25 we used the four measurements

of sensitivity (Sn), specificity (Sp), accuracy (Ac), and Mathew’s

Correlation Coefficient (MCC) to evaluate the prediction

performance of GPS-YNO2. The Ac represents the correct

ratio between both the positive (+) and negative (�) data sets,
whereas Sn and Sp illustrate the correct prediction ratios of the

positive (+) and negative data (�) sets, respectively. When the

number of positive data and negative data differ too much

from each other, the MCC should also be calculated. The

value of MCC ranges from �1 to 1, and a larger MCC stands

for better performance.

Among the data with positive hits obtained by GPS-YNO2,

the real positives are defined as ‘‘true positives’’ (TP), while the

others are defined as ‘‘false positives’’ (FP). Among the data

with the negative predictions obtained by GPS-YNO2, the real

positives are defined as ‘‘false negatives’’ (FN), while the

others are defined as ‘‘true negatives’’ (TN). The performance

measurements of Ac, Sn, Sp, and MCC are defined as below:

Sn¼ TP

TPþFN; Sp¼
TN

TNþFP; Ac¼ TPþTN
TPþFPþTNþFN; and

MCC¼ ðTP�TNÞ�ðFN�FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ�ðTNþFPÞ�ðTPþFPÞ�ðTNþFNÞ

p :

In this work, the leave-one-out validation and 4-, 6-, 8-, 10-

fold cross-validations were performed. The Receiver
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Operating Characteristic (ROC) curves and AROCs (area

under ROCs) were also drawn and analyzed.

Implementation of the online service and local packages

The online service and local packages of GPS-YNO2 1.0 were

implemented in JAVA. For the online service, we tested the

GPS-YNO2 1.0 on a variety of internet browsers, including

Internet Explorer 6.0, Netscape Browser 8.1.3 and Firefox 2

under the Windows XP Operating System (OS), Mozilla

Firefox 1.5 of Fedora Core 6 OS (Linux), and Safari 3.0 of

Apple Mac OS X 10.4 (Tiger) and 10.5 (Leopard). For the

Windows and Linux systems, the latest version of Java Runtime

Environment (JRE) package (JAVA 1.4.2 or later versions) of

Sun Microsystems should be pre-installed. However, for Mac

OS, GPS-YNO2 1.0 can be directly used without any additional

packages. For convenience, we also developed local packages of

GPS-YNO2 1.0, which worked with the three major Operating

Systems, Windows, Linux and Mac.

Results

Development of GPS-YNO2 for prediction of PTN sites

In this work, a training data set of 1066 experimentally verified

PTN sites in 554 unique proteins was collected from the

scientific literature (Table S1, ESIw). Previously, we developed
the GPS (Group-based Prediction System) algorithm for the

prediction of kinase-specific phosphorylation sites.25 Recently,

the GPS algorithm was substantially improved to version

3.0 and achieved a considerable success in the prediction of

S-nitrosylation sites.24 Here, we applied the GPS 3.0 algorithm

to predict PTN sites. To improve prediction performance, a

sequential four-step procedure was adopted, with k-means

clustering, MLS, WT and MaM. By exhaustively testing, it

was found that this training order cannot be changed.

Through the k-means clustering method, the training dataset

was classified into five groups, clusters A, B, C, D, and E,

with HAS values of 0.2542, 0.2809, 0.2698, 0.2784 and

0.2521, respectively. Based on the highest leave-one-out

performance, the NSP(m, n) for clusters A, B, C, D and E

were determined to be NSP(25, 6), NSP(27, 11), NSP(19, 28),

NSP(10, 20) and NSP(8, 4), respectively. Finally, the weight

of each position and scoring matrix for each cluster were

optimized.

After the training to improve performance, we developed

the GPS-YNO2 software to predict the PTN sites. Although

the NSP(m, n) for each cluster is different, NSP(7, 7) is

shown for convenience. The prediction results for the mouse

14-3-3 protein epsilon (UniProt ID: P62259) is shown as an

example (Fig. 2). Previously, the mouse 14-3-3 protein epsilon

was experimentally identified to be nitrated at Y49 and

Y214.15 During data collection, we found that Y9, Y131 and

Y214 in the human 14-3-3 protein epsilon are also nitrated.17

Since the human and mouse sequences of the 14-3-3 protein

epsilon are identical, the Y9, Y49, Y131 and Y214 sites were

preserved only in the mouse protein after redundant clearing

(Table S1, ESIw). Furthermore, the mouse 14-3-3 protein

beta/alpha was found to be nitrated at Y84,35 with a highly

conserved site of Y85 in its paralog of the 14-3-3 protein

epsilon (Table S1, ESIw). Using GPS-YNO2 1.0, it was

predicted that the 14-3-3 protein epsilon can be nitrated at

Y9, Y20, Y49, Y85, Y131, Y152 and Y214 (Fig. 2). The

positive hits of Y9, Y49, Y85, Y131 and Y214 are consistent

with previous experimental studies,15,17,35 while the prediction

of Y20 and Y152 provides useful information for further

experimental verification.

Fig. 2 Screen snapshot of the GPS-YNO2 1.0 software. The medium threshold was chosen as the default threshold. As an example, the prediction

results of mouse 14-3-3 protein epsilon (P62259) were shown.
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Performance evaluation and comparison

Taking probable over-fitting into consideration, we employed

the leave-one-out and 4-, 6-, 8-, 10-fold cross-validations

to evaluate the prediction robustness and performance of

GPS-YNO2. The ROC curves are presented in Fig. 3, while

the AROC values were calculated as 0.674 (leave-one-out),

0.634 (4-fold), 0.661 (6-fold), 0.648 (8-fold) and 0.659

(10-fold), respectively (Fig. 3). Since the 4-, 6-, 8-, 10-fold

cross-validations were close to the leave-one-out validation, it

was demonstrated that GPS-YNO2 1.0 is a robust predictor of

PTN sites and thus of promising performance.

For comparison, we calculated the performance of several

other approaches, including GPS 2.0 and position-specific

scoring matrix (PSSM).25,31 To avoid any bias, the dataset used

in GPS 3.0 was also employed in these two methods. We

calculated the leave-one-out validations for the GPS 3.0, GPS

2.0 and PSSM algorithms and drew the ROC curve (Fig. 4). The

AROC values were calculated as 0.607 (GPS 2.0), 0.609 (PSSM)

and 0.674 (GPS 3.0). In addition, we compared the Sn values

with the fixed Sp values of GPS 3.0 in a manner identical with

other methods (Table 1). Through these comparisons, GPS

3.0 was demonstrated to be better than the other methods.

Previously, Elfering et al. suggested that PTN recognizes the

consensus sequences of [LMVI]-X-[DE]-[LMVI]-X(2,3)-[FVLI]-

X(3,5)-Y (where X is any amino acid and Y is the target tyrosine)

orH-X-[DE]-H-X(2,3)-H(2)-X(2,4)-Y (whereH is a hydrophobic

residue).23 With the same dataset, we calculated the performance

of the two motifs as 86.98% of Ac, 1.59% of Sn, 98.83% of Sp

and 86.41% of Ac, 2.44% of Sn, 98.06% of Sp, respectively

(Table 1). With the same Sp values of 98.83% and 98.06%, the

Sn values of GPS 3.0 were 4.78% and 6.85%, respectively

(Table 1). In this regard, GPS 3.0 was shown to be superior to

the simple linear motif approach.

Large-scale prediction of PTN sites in proteins

Previously, a large number of nitrated proteins have been

reported in small- or large-scale studies, even though the

actual PTN sites remain to be elucidated. As a demonstration

of GPS-YNO2 1.0, 370 potentially nitrated substrates from

the scientific literature were collected (Table S2, ESIw),
followed by retrieving the primary sequences from the UniProt

database.28 We successfully predicted 325 (B88%) of the

proteins having at least one potential PTN site using

GPS-YNO2 under the default threshold (medium) (Table S2,

ESIw). These predictions should be useful for further experi-

mental identification. Several examples were randomly picked

out, and the results are shown in Fig. 5.

Fig. 3 The prediction performance of GPS-YNO2 1.0. The

leave-one-out validation and 4-, 6-, 8-, 10-fold cross-validations were

calculated. The Receiver Operating Characteristic (ROC) curves and

AROCs (area under ROCs) were also drawn and analyzed.

Fig. 4 Comparison of GPS 3.0, GPS 2.0 and PSSM with the

leave-one-out performance.

Table 1 Comparison of the GPS 3.0 algorithm with other
approaches. For the construction of GPS-YNO2 software, the three
thresholds of high, medium and low were chosen. For comparison, we
fixed the Sp values of GPS 3.0 to be identical or similar to other
methods and compared the Sn values

Method Threshold Ac (%) Sn (%) Sp (%) MCC

GPS 3.0 High 82.57 28.89 90.02 0.1884
Medium 79.60 40.53 85.02 0.2171
Low 76.51 50.09 80.18 0.2335

87.37 4.78 98.83 0.0884
86.95 6.85 98.06 0.0979

GPS 2.0 81.41 18.39 90.15 0.0896
78.07 27.96 85.02 0.1142
74.38 33.49 80.05 0.1076

PSSM 81.22 17.46 90.04 0.0806
77.69 24.86 85.02 0.0877
74.27 32.46 80.08 0.0999

Motif 1a 86.98 1.59 98.83 0.0126
Motif 2b 86.41 2.44 98.06 0.0117

a Motif 1, [LMVI]-X-[DE]-[LMVI]-X(2,3)-[FVLI]-X(3,5)-Y (where X

is any amino acid and Y is the target tyrosine).23 b Motif 2, H-X-[DE]-

H-X(2,3)-H(2)-X(2,4)-Y (whereH represents a hydrophobic residue).23
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It was proposed that PTN of the human band 3 anion

transport protein/SLC4A1 (P02730) by peroxynitrite

inhibits its phosphorylation by tyrosine kinases in human

erythrocytes.36 However, the corresponding nitrated tyrosines

were not experimentally identified. With GPS-YNO2 1.0, we

predicted that the human SLC4A1 can be nitrated at Y8, Y21,

Y392, Y555 and Y904. Interestingly, from the UniProt

annotation information,28 we found that the three residues of

Y8, Y21 and Y904 are known phosphotyrosines (Fig. 5A).

Recent work by Sekar et al. suggested that the nitration of

fructose-bisphosphate aldolase A/ALDOA (P04075) reduces its

maximum velocity to regulate humanmast cell (MC) phenotype

and function.37 Here, we predicted that Y3, Y204, Y223, Y328

and Y343 in ALDOA might be nitrated, with Y3, Y204 and

Y223 being known phosphotyrosines (Fig. 5B). Previously,

Schildknecht et al. suggested that the mouse prostaglandin

G/H synthase 2/Ptgs2 (Q05769) in endotoxin-stimulated

RAW 264.7 macrophages was autocatalytically nitrated,

although the actual sites were not determined.38 We predicted

that Y341, Y446, Y461 and Y481 might be nitrated (Fig. 5C).

Again, the Y446 is a known phosphotyrosine. Taken together,

PTN plays an important role in signal transduction by rivaling

tyrosine phosphorylation at the same sites. In addition, a

proteomics investigation in S. cerevisiae identified isocitric

dehydrogenase/IDH2 (P28241) as a PTN substrate.39 Here we

predicted that IDH2 might be nitrated at Y157, which would be

expected to be critical for its catalytic activity from the UniProt

annotations (Fig. 5D).

Discussion

As a ubiquitous PTM critical for a wide array of biological

processes in physiology and pathology, PTN has attracted

considerable interest and investigative efforts.1–6 It is widely

accepted that cellular nitric oxide has important implications

in PTN.1–6 Since the identification of nitrated substrates with

the actual sites is fundamental for dissecting the molecular

mechanisms and regulatory functions of PTN,1–3 a large number

of low-throughput and large-scale studies have been performed

in this area.14,16–21 However, compared with time-consuming and

expensive experimental methods, the computational prediction

of PTN sites is a conveniently rapid method of obtaining useful

information for subsequent experimental verification.

Previously, Yang prepared a training data set containing 56

positive and 73 negative 10-mer PTN peptides, and used four

machine-learning algorithms for prediction.40 Although the

performance was claimed to be promising, no applicable tool

was made available.40 Recently, He et al. obtained 56 positive

and 725 negative PTN peptides from NCBI.41 With a nearest

neighbor algorithm, a satisfying performance was reached,

although no applicable predictors are available.41 In this work,

we present the novel software GPS-YNO2 for the prediction

of PTN sites, using a much larger training data set with

1066 positive and 7684 negative sites. We greatly refined the

previously developed algorithm of GPS 2.0, the new program

containing a scoring strategy and an approach of matrix

mutation (MaM) to improve the performance.25 In GPS 3.0,

the original scoring strategy was adopted as the initial step.

Certain performance-improvement procedures, including

k-means clustering, MLS, WT and MaM, helped the GPS

3.0 algorithm to obtain a promising result. Through annotating

the exact PTN sites for those substrates for which precise

sites had not been identified in previous large-scale or small-

scale studies, the current GPS 3.0 algorithm has already

exhibited superiority, although further improvement is still

expected.

As a result of the continuing advances made in previous

studies, PTN was found to target broad substrates in different

biological processes. The collection of PTN substrates from

the literature provided an opportunity to analyze the

functional abundance and diversity of PTN. With a hyper-

geometric distribution,33 we statistically analyzed the enriched

biological processes, molecular functions and cellular

components with gene ontology (GO) annotations for the

human PTN substrates (Table S3, ESIw). The five most

over-represented biological processes of translational elongation

(GO:0006414), RNA splicing (GO:0008380), mRNA processing

(GO:0006397), translation (GO:0006412) and protein folding

(GO:0006457) suggested that PTN regulates transcription,

translation and protein stability through post-translational

modification, while the statistical results in terms of the

molecular functions, e.g., protein binding (GO:0005515),

RNA binding (GO:0003723), nucleotide binding (GO:0000166),

structural constituent of ribosome (GO:0003735), and unfolded

protein binding (GO:0051082), are consistent with this notion

(Table S3, ESIw).

Fig. 5 Applications of GPS-YNO2 1.0. We predicted potential PTN sites in the experimentally identified nitrated substrates with the default

threshold. (A) The human band 3 anion transport protein/SLC4A1 (P02730); (B) the human fructose-bisphosphate aldolase A/ALDOA (P04075);

(C) the mouse prostaglandin G/H synthase 2/Ptgs2 (Q05769); (D) the yeast isocitrate dehydrogenase/IDH2 (P28241).
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Since PTN and S-nitrosylation are both associated with

NO-dependent oxidative stress, we also surveyed the biological

roles of S-nitrosylation (Table S4, ESIw). For S-nitrosylation,

the over-represented biological processes such as glycolysis

(GO:0006096), cellular carbohydrate metabolic process

(GO:0044262), proteolysis involved in cellular protein catabolic

process (GO:0051603), and the tricarboxylic acid cycle

(GO:0006099) suggested that S-nitrosylation plays an essential

role in metabolism and catabolism (Table S4, ESIw). Again,

the statistical results in terms of cellular components, e.g.,

mitochondrion (GO:0005739), melanosome (GO:0042470), and

mitochondrial matrix (GO:0005759), are consistent with this

notion (Table S4, ESIw).
From the individual statistical results for PTN and

S-nitrosylation, it was obvious that these two PTMs shared

many GO terms, such as anti-apoptosis (GO:0006916), protein

folding (GO:0006457) and so on (Tables S3 and S4, ESIw). These
results were consistent with previous reports.13,20,42,43 However,

by comparison of PTN and S-nitrosylation with the Yates’

Chi-square (w2) test,34 we also observed a number of interesting

differences (Table 2). For instance, compared with the

enhancement in transcription and translation of the PTN

substrates, biological processes such as ion transport, glycolysis

and multicellular organismal development were over-represented

in the S-nitrosylated proteins (Table 2). The molecular function

results were consistent with those of the biological processes.

Based on systematic analysis it is proposed that, compared with

reversible S-nitrosylation, PTN preferentially attacks funda-

mental biological processes and functions.

Taken the various lines of evidence together, we propose

that GPS-YNO2 1.0 can serve as a useful tool for identifying

potential PTN sites. Also, this analysis provides a good start

for further investigating molecular mechanisms of PTN. We

believe computational predictions followed by experimental

verification will help advance the understanding of the

mechanisms and dynamics of PTN.
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