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Abstract As an important protein acylation modification, lysine succinylation (Ksucc) is involved

in diverse biological processes, and participates in human tumorigenesis. Here, we collected 26,243

non-redundant known Ksucc sites from 13 species as the benchmark data set, combined 10 types of

informative features, and implemented a hybrid-learning architecture by integrating deep-learning

and conventional machine-learning algorithms into a single framework. We constructed a new tool

named HybridSucc, which achieved area under curve (AUC) values of 0.885 and 0.952 for general

and human-specific prediction of Ksucc sites, respectively. In comparison, the accuracy of Hybrid-

Succ was 17.84%–50.62% better than that of other existing tools. Using HybridSucc, we conducted

a proteome-wide prediction and prioritized 370 cancer mutations that change Ksucc states of 218

important proteins, including PKM2, SHMT2, and IDH2. We not only developed a high-profile

tool for predicting Ksucc sites, but also generated useful candidates for further experimental con-

sideration. The online service of HybridSucc can be freely accessed for academic research at http://

hybridsucc.biocuckoo.org/.
Introduction

In proteins, positively charged lysine (Lys) residues are prefer-
entially subject to a broad spectrum of post-translational mod-
ifications (PTMs), especially a number of short-chain Lys

acylations such as Lys acetylation (Kac) and Lys succinylation
nces and
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(Ksucc) [1–4]. Biochemically, Kac attaches a small and
hydrophobic acetyl group to the amine group of the Lys resi-
due to neutralize its positive charge, with a mass of 42.0106 Da

[1,2]. Ksucc adds a bulkier and acidic succinyl group to alter
the Lys charge from +1 to �1, with a much larger mass of
100.0186 Da [1,2,5]. Generally, Ksucc is comparable to protein

phosphorylation, a well-studied PTM that also induces a �1
charge on proteins by adding a 79.9663-Da phosphate group
to a serine, threonine, or tyrosine residue [2,3]. Since protein

phosphorylation is involved in almost all biological processes
by dramatically changing the structure, enzymatic activity,
and stability of the proteins, it has been proposed that Ksucc
might also be functionally important [2,3]. Similar to Kac,

Ksucc occurs in both histone and non-histone proteins, and
participates in regulating metabolism [6,7], immunity [8],
autophagy [9], genome stability [10], and gene expression

[11]. The dysregulation of Ksucc is highly associated with
human diseases such as cancer and neurodegenerative disor-
ders [2,12]. Thus, identification of modified substrates with

exact Ksucc sites is fundamental for understanding the molec-
ular mechanisms and regulatory roles of Ksucc.

In 1961, Ksucc was initially developed as a biochemical

assay to efficiently test wheal-and-erythema responses via inhi-
bition of antibody formation in serum [13]. 50 years later,
Ksucc was discovered to naturally occur on protein Lys resi-
dues in vivo, as a novel PTM [5,14]. Rapid progresses in devel-

opment of the state-of-the-art techniques for succinylomic
profiling have led to the detection of hundreds or thousands
of Ksucc sites through high-throughput mass spectrometry

and immunoaffinity enrichment of Ksucc peptides using anti-
succinyllysine antibody. In 2011, Dr. Yingming Zhao’s group
conducted a pilot analysis of the Lys succinylome, and identi-

fied 69 Ksucc sites of 14 proteins in Escherichia coli [5]. Later,
they carried out a more comprehensive profiling and detected
2565 Ksucc sites in 779 proteins from mouse liver and cell lines

[7]. As more and more experimental studies were performed,
the collection, integration and annotation of known Ksucc
substrates and sites emerged as important topics for sharing
and reusing data. In 2014, we developed a database named

compendium of protein lysine modifications (CPLM) 2.0, by
manually collecting known substrates and sites for 12 types
of protein Lys modifications (PLMs), including 897 Ksucc sub-

strates with 2523 sites [4]. Later, CPLM 2.0 was updated into
protein lysine modification database (PLMD) 3.0 for 20 types
of PLMs, containing 18,593 non-redundant Ksucc sites in 6377

proteins [15]. In addition, the most popular protein phospho-
rylation data resource, PhosphoSitePlus, also curated 4627
Ksucc sites [16].

Publicly available databases contain high-quality data sets

for training computational models with various algorithms,
which provided an alternative means for identification of
potential Ksucc sites from protein sequences. In April 2015,

Zhao et al. reported the first tool, SucPred, for the prediction
of Ksucc sites [17]. They took known Ksucc sites from CPLM
2.0 [4], adopted multiple sequence features including autocor-

relation function (ACF), 2 types of physicochemical properties
of amino acids, and pseudo amino acid composition
(PseAAC), and used the support vector machine (SVM) algo-

rithm for training [17]. After 4 months, we released an SVM-
based tool named SuccFind, in which PseAAC, composition
of k-spaced amino acid pairs (CKSAAP), and 544 types of
physicochemical properties maintained in the Amino Acid
index database (AAindex) were combined as predictive fea-
tures [18]. In 2018, Chen et al. used orthogonal binary coding
(OBC) and AAindex encodings to develop a novel deep-

learning framework, MUscADEL, for an improved prediction
of 8 types of PLMs including Ksucc [19]. To date, 13 site pre-
dictors have been designed, and multiple types of sequence and

structural features have been used (Table S1). However, it is
unclear which features are the most informative for predicting
Ksucc sites. Also, most of the tools were implemented in con-

ventional machine-learning algorithms, which are less efficient
in feature representation than deep-learning algorithms. The
extent to which deep-learning algorithms can improve the pre-
diction accuracy remains to be probed. In addition to the gen-

eral prediction of Ksucc sites, only SuccinSite2.0 constructed
seven species-specific predictors [20]. Due to the data accumu-
lation, more organisms should be included for the prediction

of species-specific Ksucc sites.
In this work, we compiled a non-redundant data set, con-

taining 26,243 experimentally identified Ksucc sites of 8830

proteins from 13 organisms, including Homo sapiens, Mus
musculus, Rattus norvegicus, Saccharomyces cerevisiae, Oryza
sativa, Brachypodium distachyon, Solanum lycopersicum, Toxo-

plasma gondii, E. coli, Vibrio parahaemolyticus, Bacillus sub-
tilis, Corynebacterium glutamicum, and Mycobacterium
tuberculosis (Figure 1 and Table S2). After homology clear-
ance, we carefully evaluated 7 types of sequence-derived fea-

tures including the PseAAC, CKSAAP, OBC, AAindex,
ACF, Group-based Prediction System (GPS), and position-
specific scoring matrix (PSSM), as well as 3 types of structural

features including the accessible surface area (ASA), secondary
structure, (SS) and backbone torsion angles (BTA) (Figure 1
and Table S3) [17,18,20–23]. Three conventional machine-

learning algorithms, including penalized logistic regression
(PLR), SVM, and random forest (RF), were adopted to train
computational models on the benchmark data set separately

for each feature. The accuracy of the general or species-
specific prediction of Ksucc sites was evaluated, whereas the
results demonstrate that the 10 types of features were all infor-
mative (Table S4). We also implemented a deep neural net-

work (DNN) framework and compared the predictions to
the PLR algorithm. Surprisingly, we found that deep-
learning and conventional machine-learning algorithms exhib-

ited strikingly different advantages for representing distinct
features (Table S4). Then, we merged DNN and PLR into a
hybrid-learning architecture, and developed the HybridSucc

predictor (Figure 1). In comparison, HybridSucc significantly
outperformed other existing tools, and achieved a � 17.84%
improvement of the area under curve (AUC) value (0.885 vs.
0.751) for the general prediction of Ksucc sites. Using Hybrid-

Succ, we conducted a proteome-wide prediction, and priori-
tized 5251 known and 3615 predicted Ksucc sites to be
potentially functional (Figure 1 and Table S5). Moreover, we

also mapped cancer mutations in The Cancer Genome Atlas
(TCGA) [24] to human Ksucc substrates, defined Ksucc-
related mutations (KsuMs), and developed a new statistical

approach of the gradual distribution of probability density
(GDPD) to estimate the impact of cancer mutations on Ksucc
sites. We identified 370 highly potential KsuMs in 218 genes,

including a number of well-studied genes involved in tumorige-
nesis such as the genes encoding pyruvate kinase M2 (PKM2)
[25], serine hydroxymethyltransferase 2 (SHMT2) [12], and
isocitrate dehydrogenase 2 (IDH2) [26] (Figure 1 and



Figure 1 Experimental procedure of the study

First, experimentally identified Ksucc sites were collected from 3 public databases and literature. After redundancy and homology

clearance, we prepared 14 benchmark data sets to train the general and species-specific models. For each benchmark data set, all positive

and negative KSP (10, 10) peptides were retrieved and encoded by 10 types of features, including PseAAC, CKSAAP, OBC, AAindex,

ACF, GPS, PSSM, ASA, SS, and BTA. The accuracies of various features and algorithms were critically evaluated. Then we integrated

these 10 types of features, and merged the DNN and PLR algorithms into a hybrid-learning architecture for model training. We constructed

a new tool named HybridSucc, conducted a proteome-wide prediction, and prioritized potential KsuMs that dramatically change protein

Ksucc states in human cancer. Ksucc, lysine succinylation; KSP, Ksucc site peptide; PseAAC, pseudo amino acid composition; CKSAAP,

composition of k-spaced amino acid pairs; OBC, orthogonal binary coding; AAindex, Amino Acid index; ACF, autocorrelation function;

GPS, Group-based Prediction System; PSSM, position-specific scoring matrix; ASA, accessible surface area; SS, secondary structure; BTA,

backbone torsion angle; DNN, deep neural network; PLR, penalized logistic regression; KsuM, Ksucc-related mutation; Ac, accuracy; Sn,

sensitivity; Sp, specificity; Pr, precision; MCC, Matthews correlation coefficient; ROC, receiver operating characteristic.

196 Genomics Proteomics Bioinformatics 18 (2020) 194–207
Table S6). Taken together, our study not only established a
novel hybrid-learning architecture to achieve a superior accu-

racy for the prediction of Ksucc sites, but also systematically
characterized human KsuMs that potentially function in
cancer.
Method

Data collection and preparation

From 3 public databases, PLMD 3.0 [15], PhosphoSitePlus

[16], and dbPTM [27], we obtained 18,593 non-redundant
known Ksucc sites. To avoid missing any data, we further con-
ducted a literature curation by searching PubMed with multi-

ple keywords such as ‘‘protein succinylation”, ‘‘lysine
succinylation” and ‘‘succinylated protein”, and manually col-
lected 21,392 experimentally identified Ksucc sites. The two

data sets were merged, and we mapped the Ksucc sites to pri-
mary protein sequences downloaded from the UniProt data-
base [28] to pinpoint the exact Ksucc positions for each
species. We obtained 26,243 non-redundant Ksucc sites in

8830 proteins of 13 organisms, including eight eukaryotes,
H. sapiens, M. musculus, R. norvegicus, O. sativa, S. lycoper-
sicum, B. distachyon, T. gondii and S. cerevisiae, and five
prokaryotes, E. coli, V. parahaemolyticus, B. subtilis, C. glu-
tamicum, and M. tuberculosis.

Prior to preparation of the benchmark data sets for training
and testing, homologous sites were cleared using the CD-HIT
program to avoid overfitting [29], with a threshold of 40%

sequence similarity [22]. If two Ksucc proteins are modified
at the same positions with a > 40% sequence identity, only
one of them was reserved. Then, we defined a Ksucc site pep-
tide KSP (m, n) as a Lys residue flanked by m residues

upstream and n residues downstream. Because too many
parameters required fine-tuning in this study, we adopted
KSP (10, 10) to enable rapid training. As previously described

[22], KSP (10, 10) peptides around known Ksucc sites were
regarded as positive data, whereas KSP (10, 10) items derived
from the remaining non-succinylated Lys residues in the same

proteins were taken as negative data. The redundancy at the
peptide level was cleared for positive and negative data, respec-
tively, and only one KSP (10, 10) was reserved if multiple iden-

tical peptides were detected. For the general prediction of
Ksucc sites, the non-redundant data set for training and testing
contained 21,770 positive sites and 165,071 negative sites from
7415 substrates, respectively (Table S2). For the species-

specific predictions, the same redundancy clearance procedure
was performed to obtain the benchmark data set for each spe-
cies (Table S2). All benchmark data sets of known Ksucc sub-
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strates with UniProt accession numbers, protein sequences,
Ksucc positions, organisms, and PubMed IDs (PMIDs) of
original references, can be downloaded at http://hybridsucc.

biocuckoo.org/download.php.

Feature encoding scheme

For each benchmark data set, 10 types of features were sepa-
rately extracted from the KSP (10, 10) peptides of both posi-
tive and negative data sets, including 7 types of sequence-

derived features, PseAAC, CKSAAP, OBC, AAindex, ACF,
GPS, and PSSM, as well as 3 structural features, ASA, SS,
and BTA [17,18,20–23] (Table S3). The 10 types of features

were defined as: (1) PseAAC, which denotes the amino acid
frequencies [17,18,20–23]; (2) CKSAAP, which indicates the
composition of amino acid pairs separated by k other residues
[20,21]; (3) OBC, which denotes position-specific amino acids

[20]; (4) AAindex, a database that contains 566 amino acid
indices of physicochemical properties [17,18,20–23]; (5) ACF,
which represents the sequence order and correlation informa-

tion [17]; (6) GPS, which reflects the position-weighted similar-
ity of amino acids [22]; (7) PSSM, which provides the
probability of an amino acid occurrence at a specific position

[20,23]; (8) ASA, which indicates the exposed area of an amino
acid residue to solvent [23]; (9) SS, which represents 3 types of
structural elements, including a-helix, b-strand, and coil [23];
(10) BTA, which offers continuous angle information of the

local conformation of proteins, including the backbone torsion
angles u and W, the angle between Cai-1-Cai-Cai+1 (h) and the
dihedral angle rotated about the Cai-Cai+1 bond (s) [23].

More details on the implementation of the 10 features were
described in File S1.

Conventional machine-learning algorithms

In this study, 3 classical machine-learning algorithms including
PLR [30], SVM [21], and RF [20] were used to evaluate the pre-

dictive capacities of the 10 features for general or species-
specific prediction of Ksucc sites. For the PLR, SVM and
RF algorithms, five measurements of accuracy (Ac), sensitivity
(Sn), specificity (Sp), precision (Pr) and Matthews correlation

coefficient (MCC) were calculated as:

Ac ¼ TPþ TN

TPþ FPþ TNþ FN
ð1Þ

Sn ¼ TP

TPþ FN
ð2Þ

Sp ¼ TN

TNþ FP
ð3Þ

Pr ¼ TP

TPþ FP
ð4Þ

MCC ¼ TP� TNð Þ � ðFN� FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TNþ FPð Þ � ðTPþ FPÞ � ðTNþ FNÞp

ð5Þ
For each algorithm, 4-, 6-, 8-, and 10-fold cross-validations

were performed separately. The receiver operating characteris-

tic (ROC) curves were illustrated for Sn vs. 1�Sp scores and
the AUC values were calculated. For accurate estimation of
the performance, the 10-fold cross-validation was indepen-
dently performed 100 times and the average AUC was calcu-

lated for each algorithm.
To further improve accuracy and prevent overfitting, we

refined the original PLR algorithm by adding two steps of ran-

dom mutation and random zeroing. First, the weights of dif-
ferent features were calculated by PLR with the least
absolute shrinkage and selection operator (LASSO) penalty

[30], and the 10-fold cross-validation AUC was computed.
Then we selected an initial weight of +1 or �1 per time,
and recalculated the AUC. The manipulation was adopted if
the AUC score increased, and the random mutation process

was stopped when the AUC was not enhanced any longer.
To avoid the local optimization, we added a step by random
zeroing one weight, and re-conducted the multi-round random

mutation process. Such a procedure was iteratively repeated
until convergence was reached.

Deep-learning algorithm

A 4-layer DNN framework was implemented, and each layer
consisted of a number of computational units called neurons

(Table S7). To avoid over-fitting, Dropout was used by ran-
domly dropping nodes from the two hidden layers if the accu-
racy increased. In each layer, all neurons constitute an internal
feature representation, which also acts as the output of the

layer. In the first step, the input layer receives data matrices,
in which each line represents a unique KSP (10, 10) peptide,
whereas columns contain numerical data generated by various

feature encoding methods. For each neuron of the input layer,
a data matrix x is transformed by a rectified linear unit (ReLU)
activation function, which is defined as:

ReLU xð Þ ¼ x; x � 0

0; x < 0

�
ð6Þ

The first hidden layer is mainly adopted for feature extrac-
tion and representation, and the second is a fully connected
hidden layer for generating predictions. The ReLU activation

function is used for each node. The output layer contains
two sigmoid neurons to calculate a Psucc score for a given
KSP (10, 10) peptide y, defined as:

Psucc yð Þ ¼ sigmoid yð Þ ¼ 1

1þ e�y
ð7Þ

The Psucc value, ranging from 0 to 1, denotes the probabil-
ity of a KSP (10, 10) to be a real Ksucc site. Our implementa-
tion utilized the Keras 2.0.4 library (http://github.com/

fchollet/keras) with the tensorflow 1.2.0 backend, which was
configured in the graphics processing units (GPUs) of the
NVIDIA CUDA development environment for parallel com-

puting. During the training, transient parameters such as the
learning rate, degree of momentum, mini-batch size, strength
of parameter regularization, and dropout probability were
simultaneously optimized to achieve optimal performance.

Architecture of HybridSucc

To maximally capture the sequence and structural properties

of Ksucc sites, we combined the predictions of DNN and
PLR, to create a deep-learning and conventional machine-

http://hybridsucc.biocuckoo.org/download.php
http://hybridsucc.biocuckoo.org/download.php
http://github.com/fchollet/keras
http://github.com/fchollet/keras
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learning architecture that can be called a hybrid-learning
framework. For the general prediction of Ksucc sites, DNN
was first used to train a computational model for each of the

10 types of features, and 4-, 6-, 8-, and 10-fold cross-
validations were performed to evaluate the robustness and
accuracy of each model. For the 10 features (f1, f2, f3, . . .,
f10), one KSP (10, 10) peptide was scored by DNN with 10 val-
ues (D1, D2, D3, . . ., D10). For the PLR, each KSP (10, 10) pep-
tide was given 10 scores (P1, P2, P3, . . ., P10) corresponding to

the 10 features. Thus, each KSP (10, 10) peptide could be re-
encoded as a 20-dimensional number vector:

V ¼ ðD1;D2;D3; � � � ;D10;P1;P2;P3; � � � ;P10Þ ð8Þ
The vector V was used as the secondary feature and re-

trained by PLR to get a final score, whereas 4-, 6-, 8-, and
10-fold cross-validations were performed to evaluate the per-
formance. For species-specific Ksucc models, transfer learning

[31] was adopted by using the general models in DNN, and the
species-specific data was used to fine-tune the network of each
organism. All computational models were trained in a com-
puter with an NVIDIA GeForce GTX 960 GPU, an Intel(R)

CoreTM i7-6700K @ 4.00 GHz central processing unit (CPU),
and 32 GB of RAM.

Prediction of potential Ksucc sites

First, we downloaded the complete proteome sequences of the
8 eukaryotes and 5 prokaryotes from UniProt (https://www.

uniprot.org/, in December, 2018). A classic approach of recip-
rocal best hits (RBHs) was adopted to determine potential
orthologs of known Ksucc proteins in the 13 species, if two

proteins of two different organisms reciprocally find each other
as the best hit from the BLAST search. For each species, its
corresponding predictor in HybridSucc was used to predict
Ksucc sites in all known and orthologous proteins, with the

default threshold (Sp = 95%). The prediction results were
downloadable from http://hybridsucc.biocuckoo.org/down-
load.php.

To identify potentially conserved and functional Ksucc
sites, MUSCLE [32] (http://www.drive5.com/muscle/, version
3.8.31) was applied to perform multiple alignments for each

group of orthologous proteins, and identify conserved Ksucc
columns (CKCs) for aligned Lys residues that contained at
least one known Ksucc site. For each CKC, organisms with
a non-Lys residue, or a Lys residue that was not predicted to

be a Ksucc site were removed.

Collection of human cancer mutations

We downloaded human somatic cancer mutations from the
TCGA [24] data portal (http://portal.gdc.cancer.gov/, level 4
data, in May, 2018). All available projects were downloaded,

including adrenocortical carcinoma (ACC), bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA), cervi-
cal and endocervical cancers (CESC), cholangiocarcinoma

(CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm
diffuse large B-cell lymphoma (DLBC), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney chromophobe

(KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), acute myeloid leukemia
(LAML), brain lower grade glioma (LGG), liver hepatocellu-
lar carcinoma (LIHC), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), mesothelioma (MESO),
ovarian serous cystadenocarcinoma (OV), pancreatic adeno-
carcinoma (PAAD), pheochromocytoma and paraganglioma

(PCPG), prostate adenocarcinoma (PRAD), rectum adenocar-
cinoma (READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ

cell tumors (TGCT), thyroid carcinoma (THCA), thymoma
(THYM), uterine corpus endometrial carcinoma (UCEC),
and uterine carcinosarcoma (UCS), and uveal melanoma
(UVM). Entrez Gene IDs in TCGA files were used to map

the mutation data to human Ksucc proteins. In total, we
obtained 1,779,214 missense single nucleotide variants (SNVs)
in 11,659 tumor samples across 33 major cancer

types/subtypes.

A statistical approach for estimating functional impacts of

KsuMs

In this study, we defined a KsuM as an SNV located within a
KSP (10,10) region that potentially changes the protein Ksucc

state. Since previous studies have demonstrated that the substi-
tution of a Ksucc site to a glutamic acid (E) mimics the nega-
tively charged succinyl group [12,33], a missense mutation of K
to a non-E residue can directly disrupt a Ksucc site, and sub-

stitution of an SNV of a non-E residue to K might create a new
Ksucc site. In addition, missense SNVs occurring at the flank-
ing regions potentially increase or decrease the modification

probability of a Ksucc site. To computationally identify
KsuMs that significantly upregulate or downregulate protein
Ksucc levels, we used the positive KSP (10,10) peptides P

and negative KSP (10,10) peptides N to model the probability
density distribution. For any given KSP (10,10) peptide Ki, the
score Si calculated by HybridSucc was transformed into a

Bayesian posterior probability (BPP) as follows:

p PjSið Þ ¼ f SijPð ÞpðPÞ
f SijPð Þp Pð Þ þ f SijNð ÞpðNÞ ð9Þ

As previously described [34], the prior probability values of
p(P) and p(N) reflect our belief in the distribution of P and N
and were determined as the corresponding AUC value and 1,

respectively. Then, HybridSucc was adopted to calculate the
scores for all potential KsuMs (n = 63,693) in H. sapiens
before (xi, i = 1, 2, 3, . . ., n) and after (yi, i = 1, 2, 3, . . ., n)
the mutation, whereas all scores were normalized into BPPs.
To estimate the global probability density distribution of BPPs
before (x) and after (y) the mutation, we hypothesized that the
joint probabilities within a small window might follow a nor-

mal distribution, and the Parzen window [35] based on the
Gaussian kernel was used to conjugate the distributions in
all windows to approximate the global distribution as follows:

f x; yð Þ ¼ 1

nh2

Xn

i¼1

1

2p
exp � x� xið Þ2 þ y� yið Þ2

2h2

" #
ð10Þ

where h is the window width, and the size of h affects the accu-
racy of the probability density estimation. The maximum like-
lihood estimation (MLE) method was used to determine the

optimal h value as follow:

https://www.uniprot.org/
https://www.uniprot.org/
http://hybridsucc.biocuckoo.org/download.php
http://hybridsucc.biocuckoo.org/download.php
http://www.drive5.com/muscle/
http://portal.gdc.cancer.gov/
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f x1;y1ð Þ; x2;y2ð Þ; � � � ; xn;ynð Þjh½ �
¼ f x1;y1ð Þjh½ � � f x2;y2ð Þjh½ � � � � � � f xn;ynð Þjh½ � ð11Þ
For different h values (from 0 to 1, 0.001 per step), we esti-

mated the joint probability density distributions for each
KsuM from the remaining ones, until all KsuMs were used
once. The likelihood value is the product of n probability den-

sity values, and the optimal h value that maximized the likeli-
hood value was determined to be 0.018 in this study. Finally,
the x was fixed, and the probability density distribution of

its corresponding y values was computed. From the distribu-
tion, the statistical significance of a given x score was calcu-
lated with a threshold of P < 0.05. To prioritize potentially
functional KsuMs, the mutated score y should be > 0.5 for

KsuMs that potentially upregulate Ksucc levels, and the orig-
inal score x should be > 0.5 for KsuMs that potentially down-
regulate Ksucc levels. Only KsuMs that significantly influence

known Ksucc sites were reserved.

Implementation of the web service

The online service of HybridSucc was constructed with PHP
and JavaScript, in an easy-to-use manner with a user-friendly
interface. The species can be selected and 3 threshold options

including ‘‘High”, ‘‘Medium”, and ‘‘Low” can be chosen with
Sp values of ~95%, ~90%, and ~85%, respectively (Table S8).
We also implemented an ‘‘All” option to allow for the predic-
tions on all Lys residues to be shown. HybridSucc was exten-

sively tested on various web browsers including Internet
Explorer, Mozilla Firefox, and Google Chrome to provide a
robust and freely available service at http://hybridsucc.bio-

cuckoo.org/.

Results

Ten types of sequence and structural features are efficient and

informative

From public databases and the literature, we collected 26,243
non-redundant known Ksucc sites in 8830 proteins of 13 spe-

cies. Our data set is much larger than those of previous studies
such as pSuc-PseRat [36], in which 14,591 experimentally iden-
tified Ksucc sites were obtained in 4960 substrates (Figure 2A

and B). Then, we eliminated homologous sites and identical
peptides to prepare a benchmark data set, containing 21,770
non-homologous and non-identical KSP (10, 10) peptides in

7415 proteins for the general prediction (Figure 2C and D,
Table S2). Such a procedure was also individually conducted
to obtain 13 additional benchmark data sets for species-
specific predictions. The results show that the species with

the most abundant Ksucc sites in eukaryotes and prokaryotes
areM. musculus and E. coli, which contained 6325 sites of 1639
proteins and 4161 sites of 1141 substrates, respectively (Fig-

ure 2C and D, Table S2).
Previously, 13 prediction tools were reported, while 10

types of sequence or structural features were established to

encode Ksucc sites (Tables S1 and S3). The original PLR algo-
rithm was improved by reserving the LASSO and adding two
steps of random mutation and random zeroing, and then

trained computational models for the 14 benchmark data sets,
based on different types of features. The results show that
sequence features were generally better than structural features
(Figure 2E and Table S4). Due to the data limitation of protein
structure databases, 3 types of structural features were compu-

tationally derived from protein sequences in this work, and
thus the predicted features might reduce the prediction accu-
racy. However, our results on different benchmark data sets

showed AUC values > 0.5, indicating that all features were
efficient and informative for predicting Ksucc sites. For the
general prediction, the AUC values of 10-fold cross-

validations ranged from 0.558 (ASA) to 0.729 (CKSAAP)
(Figure 2E and Table S4). For species-specific predictions,
the CKSAAP feature achieved the best performance in M.
musculus and E. coli, with AUC values of 0.739 and 0.718,

respectively. In contrast, our GPS feature outperformed other
features in five organisms, including R. norvegicus (0.801), S.
cerevisiae (0.781), S. lycopersicum (0.761), B. subtilis (0.722),

and C. glutamicum (0.761) (Figure 2E and Table S4). Thus, dif-
ferent types of features exhibited diverse accuracies for differ-
ent data sets.

Moreover, we tested the 10 types of features by using two
additional machine-learning algorithms, SVM and RF, and
the results demonstrate that different algorithms also gener-

ated varying AUC values even for the same data set. For the
general prediction, the GPS feature showed the best perfor-
mance with AUC values of 0.668 and 0.741 for the SVM
and RF algorithms, respectively (Table S4). The failure to find

the most informative feature may be attributed to the intrinsic
limitation of conventional machine-learning algorithms, which
are less efficient on feature representation than deep-learning

algorithms for large data sets [37]. Thus, we implemented a
4-layer DNN framework, including an input layer for input-
ting the data, two hidden layers for training the computational

models, and an output layer for prediction. Unexpectedly,
although the DNN-based results were generally better than
PLR, SVM, and RF for species-specific predictions, four algo-

rithms exhibited comparable results for the general prediction
(Table S4). Thus, our results indicated that each type of feature
only partially captured the bona fide characteristics of Ksucc
sites, and no feature could achieve the best accuracy for all

benchmark data sets.

Development of a hybrid-learning architecture for the prediction

of Ksucc sites

Since all features were efficient and one did not outperform the
others, we speculated whether the combination of all informa-

tive features can improve the accuracy. Also, since the DNN-
based predictions did not show significantly better perfor-
mance than PLR, SVM, or RF for individual features, we con-
sidered whether conventional machine-learning algorithms

could be incorporated with the deep-learning algorithm to
train a better model. Based on these two hypotheses, we
designed a novel framework, HybridSucc, for the prediction

of general or species-specific Ksucc sites from protein
sequences (Figure 3A). For each benchmark data set, all posi-
tive and negative KSP (10, 10) peptides were encoded by the 10

types of features, separately. Then, we used DNN and PLR
algorithms to train a computational model for each feature,
and 20 unique scores were outputted from the 20 models. Then

the 20 scores were adopted as secondary features to be trained
by PLR to obtain a single prediction value for each inputted
KSP (10, 10) (Figure 3A).

http://hybridsucc.biocuckoo.org/
http://hybridsucc.biocuckoo.org/


Figure 2 Benchmark data sets and prediction performance using different features

A. Number of known Ksucc sites included in this work and previous studies. B. Number of known Ksucc proteins included in this work

and previous studies. C. Number of non-redundant Ksucc sites in 13 organisms. D. Number of non-redundant Ksucc proteins in 13

organisms. E. Performance of the PLR algorithm for the general and 13 species-specific data sets. The distribution of AUC values

calculated from 100 iterations of 10-fold cross-validations is shown for the 10 types of features. The results of the SVM, RF, and DNN are

also shown in Table S4. SVM, support vector machine; RF, random forest; AUC, area under curve.
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The 10-fold cross-validations showed that the AUC values
of HybridSucc ranged from 0.840 to 0.961 (Figure 3B and C,
Figure S1). Except the general prediction (0.885) and predic-

tors in four prokaryotes, V. parahaemolyticus (0.887), B. sub-
tilis (0.861), C. glutamicum (0.859), and M. tuberculosis
(0.840), nine species achieved a highly satisfying performance

with an AUC > 0.9 (Figures 3B, C, and S1). For mammals,
the AUC were 0.952, 0.920, and 0.961 in H. sapiens, M. mus-
culus, R. norvegicus (Figures 3B, C, and S1). We also compared

HybridSucc to single features individually trained by DNN or
PLR algorithms and observed that the combination of the 10
types of features significantly improved the prediction perfor-
mance for all benchmark data sets (Figure 3B). Furthermore,

we adapted the HybridSucc architecture to only use the 10
scores generated from the DNN or PLR algorithm for a sec-
ondary training by PLR, and compared the results to those

of HybridSucc (Figures 3C, S2, and S3). Exclusively using
DNN or PLR generated AUC from 0.746 to 0.926, or 0.822
to 0.933, respectively, whereas HybridSucc achieved far supe-

rior accuracy on all benchmark data sets. For example, the
DNN- and PLR-based AUC scores were only 0.819 and
0.878 in B. distachyon, respectively, whereas HybridSucc had

an AUC of 0.920 (Figure 3C). Generally, HybridSucc exhib-
ited a 2.05%–17.98% improvement of AUC values compared
with individual algorithms (Figure 3C). Taken together, our
results demonstrate that the combination of all informative

features and the hybridization of conventional machine-
learning and deep-learning algorithms could significantly
improve the prediction performance for general and species-
specific predictions.
Performance evaluation and comparison

To further evaluate the accuracy and robustness of Hybrid-

Succ, 4-, 6-, and 8-fold cross-validations were also performed
on the benchmark data sets. Due to the page limitations, the
ROC curves of n-fold cross-validations are shown for the gen-

eral prediction (Figure 4A), and several species-specific predic-
tors in H. sapiens (Figure 4B), O. sativa (Figure 4C), and S.
cerevisiae (Figure 4D). The results show that the AUC of the
4-, 6-, 8-, and 10-fold cross-validations of HybridSucc for the

general Ksucc data set were 0.875, 0.876, 0.882, and 0.885,
respectively (Figure 4A). For H. sapiens, the AUC values of
4-, 6-, 8-, and 10-fold cross-validations were 0.947, 0.950,

0.952, and 0.952, respectively (Figure 4B), and n-fold cross-
validations also generated similar results in O. sativa (Fig-
ure 4C) and S. cerevisiae (Figure 4D). The high congruence

of different cross-validation results indicates the promising
accuracy of HybridSucc and that our computational models
are robust.

To demonstrate the superiority of HybridSucc, we com-
pared the performance of HybridSucc with that of a number
of previously reported and publicly available Ksucc site predic-



Figure 3 Hybrid-architecture and accuracy of HybridSucc

A. For each benchmark data set, all positive and negative KSP (10, 10) peptides were individually encoded by 10 types of features, and

inputted into a 4-layer DNN framework and the PLR algorithm for training computational models. We improved the original PLR

algorithm by reserving the LASSO operator and adding two new steps of random mutation and random zeroing. The 20 unique scores

generated by DNN and PLR in the first round were adopted as the secondary feature to be trained by PLR to obtain a single prediction

value for each inputted KSP (10, 10). Then, 4-, 6-, 8-, 10-fold cross-validations were performed to evaluate performance and robustness of

the prediction. B. Accuracies of HybridSucc, DNN, and PLR for each feature shown for the general and 13 species-specific data sets. The

heatmap was illustrated by HemI [49]. C. Distribution of AUC values computed from 100 iterations of 10-fold cross-validations for

HybridSucc, DNN, and PLR.
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tors, such as MUscADEL [19], SuccinSite [38], pSuc-PseRat
[36], SuccFind [18], iSuc-PseAAC [21], pSuc-Lys [39], and

iSuc-PseOpt [40] (Table S1). Other methods without applicable
online services were not included for the comparison. These 7
tools were developed for the general prediction and do not

provide the option for customizing computational models
from other data sets. Thus, we directly submitted the bench-
mark data set into each online service to calculate the perfor-
mance and compare with the 10-fold cross-validation result of

HybridSucc (Figure 4E). For MUscADEL [19], SuccinSite
[38], pSuc-PseRat [36], and SuccFind [18] that output predic-
tion scores for all Lys residues, ROC curves were illustrated

and AUC values were computed as 0.751, 0.627, 0.700, and
0.742, respectively. For iSuc-PseAAC [21], pSuc-Lys [39],
and iSuc-PseOpt [40], which have pre-defined cut-off values,

we could only calculate the performance at the thresholds (Fig-
ure 4E). Compared with the second best tool MUscADEL
[19], HybridSucc had a 17.84% higher AUC value (Figure 4E).
For the species-specific prediction, we compared HybridSucc
to SuccinSite2.0 [20], which realized multi-predictors for seven

species. We adopted the benchmark data set in SuccinSite2.0
as training data sets to retrain our models, and used the
remaining positive and negative KSP (10, 10) peptides in our

data sets as an independent testing data set. By comparison,
HybridSucc outperformed SuccinSite2.0 [20] for all organisms
examined (Figure 4F). Thus, HybridSucc implemented in the
hybrid-learning architecture is significantly better than other

existing tools.

Proteome-wide prediction of potential Ksucc sites

First, potential orthologs of known Ksucc substrates in 13 spe-
cies were computationally determined. Then we used Hybrid-
Succ to conduct a stringent prediction (Sp = 95%) for both

known and orthologous proteins (Figure 5A). We predicted
23,866 new Ksucc sites in 8710 proteins, while the species with



Figure 4 Performance evaluation and comparison of HybridSucc with other existing Ksucc prediction tools

The ROC curves and AUC values of HybridSucc for the general benchmark data set (A), H. sapiens (B), S. cerevisiae (C), and O. sativa

(D), from 4-, 6-, 8-, and 10-fold cross-validations. E. Comparison of HybridSucc with other existing predictors, including MUscADEL

[19], SuccinSite [38], pSuc-PseRat [36], SuccFind [18], iSuc-PseAAC [21], pSuc-Lys [39], and iSuc-PseOpt [40], for the prediction of Ksucc

sites in the general data set. F. Comparison of HybridSucc and SuccinSite2.0 for general and species-specific predictions of 7 species,

including H. sapiens, M. musculus, S. cerevisiae, S. lycopersicum, T. gondii, E. coli, and M. tuberculosis.
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the most predicted sites in eukaryotes and prokaryotes were R.

norvegicus and B. subtilis, respectively, which contained 4172
sites of 1298 proteins and 1417 sites of 552 substrates, respec-
tively (Figure 5B and Table S2). To evaluate the reliability of

the large-scale prediction, the amino acid occurrences around
known and predicted Ksucc sites were analyzed and illustrated
by pLogo [41] (Figure 5C). The sequence preference of known
Ksucc sites was highly similar to that of predicted ones. For

example, there was an informative and over-represented acidic
residue of aspartic acid (D) at the +1 position for both the
known and predicted sites (Figure 5C). Thus, our predicted

sites might be potential Ksucc sites with high confidence.
It has been demonstrated that a large proportion of PTM

events might not be functional, and functional PTM sites

evolve slowly [42]. Thus, a Ksucc site evolutionarily conserved
in more species might be functionally important with a higher
probability. Based on this rationale, we multi-aligned protein
sequences for each group of orthologous proteins. We

obtained 3419 CKCs including 2624, 436, and 359 CKCs con-
taining 5251 known and 3615 predicted Ksucc sites conserved
in eukaryotes, prokaryotes and both kingdoms, respectively

(Figure 5D and Table S5). The distribution of the number of
species for the CKCs showed that there were 49 CKCs with
conserved Ksucc sites in � 7 species (Figure 5D). The most

conserved CKC was the aligned column of K301 in human
heat shock protein family D (Hsp60) member 1 (HSPD1), con-

taining experimentally identified Ksucc sites in 10 species (Fig-
ure 5E). Human HSPD1 is a group I chaperonin that critically
assists the correct folding of various mitochondrial proteins,

and its active heptamers are formed from free monomeric
molecules after being transported into mitochondria [43].
Using HybridSucc, we also predicted that K301 of rat Hspd1
is a highly potential Ksucc site (Score = 0.8111), while this

predicted site and known cognates might play a conserved role
in regulating the self-assembly of HSPD1 (Figure 5E).

We also found that two CKCs contained known or poten-

tial Ksucc sites conserved in 10 species. One is K335 of the
human succinate dehydrogenase complex flavoprotein subunit
A (SDHA), which is a component of the SDH complex that is

directly involved in the tricarboxylic acid cycle (TCA) cycle
and electron transport chain [7] (Figure 5E). It has been
reported that an increased Ksucc level of mouse SDHA pro-
motes the SDH activity and cellular respiration [7], and such

a function might be conserved for either known or predicted
Ksucc sites in the aligned column. Another is K152 of human
mitochondrial ribosomal protein S11 (MRPS11), a member of

mitochondrial ribosome [44]. Although only two Ksucc sites
were experimentally detected in two prokaryotes, E. coli and
V. parahaemolyticus, their orthologous sites in other species

might also be succinylated and affect ribosome assembly.



Figure 5 Proteome-wide prediction of Ksucc sites in 13 species

A. For each species, we used its corresponding predictor in HybridSucc to predict Ksucc sites in known substrates and their orthologous

proteins, with the default threshold (Sp = 95%). B. Distribution of the numbers of predicted Ksucc proteins and sites in 13 species. C.

Amino acid frequencies of known and predicted KSP (10, 10) peptides analyzed and visualized with pLogo [41]. D. Distribution of

identified CKCs that contain known and predicted Ksucc sites in eukaryotes and/or prokaryotes. E. Three highly conserved CKCs across

13 species, including aligned columns of K301 in human HSPD1 [43], K335 in human SDHA [7], and K152 in human MRPS11 [44].

Known Ksucc sites or predicted sites with corresponding BPP scores were circled in different colors. CKC, conserved Ksucc column;

HSPD1, heat shock protein family D (Hsp60) member 1; SDHA, succinate dehydrogenase complex flavoprotein subunit A; MRPS11,

mitochondrial ribosomal protein S11; BPP, Bayesian posterior probability.
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Prediction of potential cancer-associated KsuMs in H. sapiens

Cancer genome sequencing identified millions of missense
SNVs in multiple types of human tumors [24], but exploring

the functional impacts of these somatic mutations is challeng-
ing. Aberrant Ksucc is highly correlated with cancer [2,12], and
a considerable number of missense SNVs might participate in
tumorigenesis through changing protein Ksucc states. From

1,779,214 human cancer mutations, we detected 63,693
(3.58%) potential KsuMs in KSP (10,10) regions. Then we
developed a new statistical approach, GDPD, to prioritize

370 KsuMs in 218 genes that exhibited a significant impact
on Ksucc sites (P < 0.05; Figure 6A and Table S6). Moreover,
we obtained 719 well-curated cancer genes from the Cancer

Gene Census in the Catalogue of Somatic Mutations In Can-
cer (COSMIC) [45] and 2921 known human drug targets from
the DrugBank database [46], and mapped the 218 genes to the

two data sets. A hypergeometric test demonstrated that both
the cancer genes and drug targets were significantly enriched
in human KsuM-containing proteins, with enrichment ratios
of 2.62-fold (P = 3.03E�04) and 4.15-fold (P = 1.20E�44),

respectively (Figure 6B).
The results show a KsuM of R500Q from BRCA signifi-
cantly decreased the Ksucc probability of PKM2 at K498 (Fig-

ure 6C and Table S6), which is succinylated to increase the
pyruvate kinase activity of PKM2 [25]. The desuccinylation
of PKM2 K498 inhibits its activity to generate sufficient nicoti-

namide adenine dinucleotide phosphate (NADPH) to elimi-
nate reactive oxygen species (ROS) and promote
tumorigenesis, whereas the phosphomimetic substitution

K498E significantly reduces cellular NADPH production and
inhibits cell proliferation and tumor growth [25]. Therefore,
we predicted R500Q as a deleterious KsuM that is potentially

involved in the BRCA progression. We also observed a KsuM
of R316W detected from UCEC that decreased the Ksucc of
PKM2 at K311 (Figure 6C and Table S6), which is succiny-
lated to inhibit the PKM2 activity [33]. Thus, R316W might

have an effect opposite to that of R500Q and thus inhibit
tumorigenesis.

From SKCM and BRCA, a KsuM of D272N was predicted

to significantly attenuate the Ksucc of K280 in SHMT2, a pyri-
doxal phosphate (PLP) binding protein (Figure 6C and
Table S6). SHMT2 is activated through forming tetramers

after binding PLP at the K280 site to promote tumor cell



Figure 6 Prioritization of human KsuMs that significantly change protein Ksucc states in cancer

A. The human-specific predictor in HybridSucc was adopted to score all potential KsuMs before (Original) and after (Mutant) the

mutation, and all scores were normalized into BPP values. A new statistical approach, GDPD was established to prioritize KsuMs that

significantly influence known Ksucc sites. B. Word cloud of 218 proteins with changed Ksucc state, which are significantly enriched in

cancer genes and human drug targets. The font color represents different type of genes and the font size indicates the number of KsuMs on

the respective genes. Word cloud was created using WocEA 1.0 software [50]. m indicates the number of proteins with changed Ksucc state

that are present in the Cancer Gene Census or DrugBank; M means the total number of the 218 proteins with changed Ksucc state; n

indicates the number of human proteins included in the Cancer Gene Census or DrugBank; N means the total number of human proteins.

C. Three well-studied proteins involved in human tumorigenesis, PKM2 [25], SHMT2 [12] and IDH2 [26]. Local 3D structures around

Ksucc sites, as well as nearby KsuMs and P value calculated by GDPD are shown. The downward arrows after the respective KsuMs

indicate decreased Ksucc probability. GDPD, gradual distribution of probability density; PKM2, pyruvate kinase M2; SHMT2, serine

hydroxymethyltransferase 2; IDH2, isocitrate dehydrogenase 2.
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growth, whereas K280 Ksucc prevents PLP binding to

decrease SHMT2 activity [12]. Thus, D272N might promote
cancer progression through downregulating K280 Ksucc. In
addition, the desuccinylation of IDH2, a NADPH-producing

enzyme, enhances its activity, promotes the production of
NADPH and protects cancer cells from oxidative damage
[26]. Various R172 mutations activate IDH2 and frequently

occur in human tumors such as glioma, LAML, and CHOL,
although the exact mechanisms are unclear [47,48]. From
LGG, we predicted two KsuMs, R172W and R172M, which

might enhance the IDH2 activity by inhibiting the Ksucc level
of K180 (Figure 6C and Table S6). In summary, our results
indicated a strong correlation between Ksucc and human can-
cer, and prioritized 370 highly potential KsuMs for further

experimental considerations.
Discussion

As a novel PTM [5,14], Ksucc plays a critical role in the regu-
lation of numerous biological processes [6–11], and its dysreg-
ulation is highly associated with human diseases such as cancer

[2,12]. There has been rapid development in succinylomic pro-
filing in the past few years, and thousands of Ksucc sites have
been identified by high-throughput mass spectrometry. Due to
the data accumulation, publicly available databases such as

PLMD 3.0 [15], PhosphoSitePlus [16], and dbPTM [27] con-
tribute to data sharing and reuse through the collection, inte-
gration, and annotation of known Ksucc substrates and

sites. Based on these data resources, various algorithms and
features were tested, and numerous computational tools were



Ning W et al /HybridSucc: Predict Succinylation Sites in Proteins 205
constructed to provide an alternative means for rapid identifi-
cation of potential Ksucc sites in protein sequences [17,20–23].

In this study, we compiled a benchmark data set of 26,243

known Ksucc sites (Figure 2A and B), integrated 10 types of
features, and merged DNN and PLR into a hybrid-learning
architecture to develop a new tool, HybridSucc (Figure 3A).

In the 10-fold cross-validation, HybridSucc showed AUC val-
ues of 0.885 and 0.952 for the general and human-specific pre-
dictions of Ksucc sites, respectively (Figure 4A and B), and

achieved a �17.84% improvement of AUC values for the gen-
eral prediction compared with other existing tools (Figure 4E
and F). In order to explore correlations of different features
represented by different algorithms, the 20-dimensional vector

V (D1, D2, D3, . . ., D10, P1, P2, P3, . . ., P10) initially scored by
HybridSucc was retrieved for each KSP (10, 10) peptide
around positive and negative sites in our benchmark data sets.

The Kendall’s rank correlation was adopted to pairwisely mea-
sure relations between the 10 features. For the general predic-
tion, average Kendall’s tau-b coefficients were calculated as

0.209 and 0.049 for DNN and PLR algorithms, respectively
(Figure S4A and B), while the average correlation of captured
features between DNN and PLR was determined as 0.081

(Figure S4C). We also found a similar result for the human-
specific prediction, with average correlation values of 0.211,
0.072, and 0.104 for DNN, PLR, and DNN vs. PLR, respec-
tively (Figure S4D–F). Thus, our results indicate that these

10 types of features are independently and differentially repre-
sented by different algorithms. To further demonstrate the
contribution of different features and algorithms to the final

performance, we added one feature per time starting from
BTA to retrain the DNN and PLR models, and calculated
AUC values of 10-fold cross-validations for the general and

human-specific predictions (Figure S5A and B). The gradual
increase of AUC values indicates that all features and algo-
rithms are crucial to enhance the prediction accuracy.

Although the mass spectrometry-based identification of the
in vivo succinylome has nearly become routine, such analyses
are usually labor-intensive and expensive, and lowly expressed
or succinylated proteins are difficult to probe. Thus, a large-

scale prediction of Ksucc sites from sequences can rapidly pro-
vide useful candidates for further experimental consideration.
Using HybridSucc, a proteome-wide prediction of Ksucc sites

was conducted for known substrates and their orthologous
proteins in the 13 species. We predicted 23,866 potential Ksucc
sites in 8710 proteins with a high stringency, and prioritized

5251 known and 3615 predicted Ksucc sites that are evolution-
arily conserved with potentially important functions. From
human cancer mutations, we identified 370 KsuMs in 218
genes that potentially change protein Ksucc states. The enrich-

ment of cancer genes and drug targets in KsuM-containing
genes indicates a strong correlation between Ksucc and human
cancer.

In the future, we will continuously improve and maintain
HybridSucc by collecting more experimentally identified Ksucc
sites into the training data set. It should be noted that although

the number of Ksucc sites used in HybridSucc is much larger
than those in previous studies, a considerable number of Ksucc
sites obtained from mass spectrometry-based identifications

might be false positives. The development of methods for data
quality control remains to be a great challenge to minimize the
false positives generated by different types of experimental
assays. In addition, we will test more useful features, and
include more traditional or deep-learning algorithms into the
framework. Taken together, this study reports a novel and
accurate approach for the prediction of Ksucc sites. We antic-

ipate that a hybrid learning architecture and the integration of
multiple features can be easily extended to other types of
PTMs to corroborate much better prediction.
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