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SUMMARY
The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known
about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by per-
forming plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recov-
ered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma
proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set
of biomarker combinations, which were validated by an independent cohort and accurately distinguished
and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immu-
nosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers,
mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation
and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable
knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets
of COVID-19.
INTRODUCTION

The pandemic of coronavirus disease 2019 (COVID-19) has

caused over millions of confirmed cases and hundreds of thou-

sands of deaths worldwide as reported by the World Health

Organization (WHO) (WHO, 2020) and has shown tremendous

impacts on globe health and economics. COVID-19 is caused

by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), which is the third coronavirus to cause severe respira-

tory disease in humans in addition to SARS-CoV and Middle

East respiratory syndrome coronavirus (MERS-CoV) (Lu et al.,
1108 Immunity 53, 1108–1122, November 17, 2020 ª 2020 Elsevier I
2020; Wu et al., 2020b; Zhou et al., 2020b; Zhu et al., 2020).

SARS-CoV-2 has been found to mainly infect human low respi-

ratory tract and lung, although many other organs, including

the liver, kidney, muscle, gastrointestinal tract, lymph node, cen-

tral nervous system, and heart, have also been found or pro-

posed to be attacked by this virus (De Felice et al., 2020; Varga

et al., 2020; Zhang et al., 2020a). According to a large-scale

cohort study conducted by the Chinese Center for Disease Con-

trol and Prevention, more than 19% of COVID-19 patients have

been reported to develop severe or critical conditions. In addi-

tion, although most COVID-19 patients only show mild
nc.
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symptoms, the conditions can rapidly develop from mild to se-

vere and even critical illness, particularly when adequatemedical

care is insufficient (Guan et al., 2020). Moreover, the mortality

rate of critically ill COVID-19 cases can even reach more than

60% (Yang et al., 2020b). Among the broad symptoms of

COVID-19, fever, pneumonia, sepsis, respiratory failure, acute

respiratory distress syndrome (ARDS), and multiorgan injury

are frequently observed complications and are usually associ-

ated with the pathophysiological changes, such as alveolar

macrophage activation, lymphopenia, cytokine release syn-

drome, microthrombosis, and intravascular coagulation in se-

vere COVID-19 patients (Chen et al., 2020; Guan et al., 2020;

Huang et al., 2020; Jose and Manuel, 2020; Moore and June,

2020; Wang et al., 2020a; Yang et al., 2020a). However, despite

rapid and extensive efforts made to study this emerging corona-

virus disease, the molecular mechanisms underlying the patho-

genesis of COVID-19, particularly under pathophysiological con-

ditions, are still poorly understood.

Alterations of human plasma proteins have been well recog-

nized as indicators of pathophysiological changes caused by

various diseases, including viral infections. Here, we profiled

the host responses to SARS-CoV-2 infection in humans by per-

forming quantitative proteomics of the plasma samples from a

cohort of COVID-19 patients, including the non-survivors (fatal-

ities) as well as survivors recovered from mild or severe symp-

toms. Our study uncovered a number of COVID-19-associated

alterations of host proteins, particularly ones involved in inflam-

mation and coagulation. Moreover, to identify potential bio-

markers for accurate classification of different samples, we

developed a machine-learning-based pipeline, resulting in the

identification of 11 biomarkers as well as a set of biomarker com-

binations that could accurately distinguish or predict different

COVID-19 outcomes. These biomarkers and combinations

were further validated by the proteomic data from an indepen-

dent cohort. Some of the identified biomarkers were further

examined for their plasma levels via enzyme-linked immunosor-

bent assay (ELISA) of a larger cohort of COVID-19 patients,

which are in line with the proteomic results. These biomarkers

include host proteins that play critical roles in major pathophys-

iological pathways, and the abnormal alterations of these pro-

teins in patient plasma probably contribute to the pathogenesis

of COVID-19. These striking findings provided valuable knowl-

edge about plasma biomarkers associated with COVID-19,

shed light on the pathogenesis of SARS-CoV-2 infection, and

might reveal potential therapeutic targets.

RESULTS

Study Design and Patients
We collected the blood samples of a cohort of COVID-19 patients

(cohort 1), including 5 patients with fatal (F) outcome, 7 patients

diagnosed as severe (S) symptoms, and 10 patients diagnosed

as mild (M) symptoms at Wuhan Jinyintan Hospital (Figures 1A–

1D; Table S1). The patients in the S and M groups had survived

COVID-19 and been discharged from the hospital. Of note, blood

samples were collected from the fatality patients along with the

deterioration of this disease, as FT1 represents the first samples

collected from this group of patients, and FT4 represents the

last samples before any additional samples could be collected
(Figure 1A). ST1 and MT1 represent the samples collected at

the disease peak from the S and M groups, respectively, which

were diagnosed based on National Health Commission (2020),

although ST2 and MT2 represent the last samples collected

from patients in each group shortly before they were discharged

from the hospital (Figure 1A). Furthermore, blood samples from

8 healthy (H) subjects, whose throat swab and serological tests

were negative for SARS-CoV-2, were collected for comparison.

For each blood sample of cohort 1, plasma was separated

and total proteins were extracted, denatured, and digested

into peptides by trypsin (Figure 1A). Then, a total of 62 plasma

samples were categorized into 7 batches and separately sub-

jected to tandem mass tag (TMT) labeling (Table S2). For each

batch, individual samples were labeled with TMT 11-plex re-

agents, and a pooling mixture of all the 62 samples was

included and labeled as a standard control to eliminate the

batch effect. After fractionation, each batch of peptide mixtures

was analyzed by liquid chromatography with tandem mass

spectrometry (LC-MS/MS). For database search, we con-

structed a human proteome database and also included a

SARS-CoV-2 proteome database.

Proteomic Profiling of Plasma from COVID-19 Patients
From cohort 1, we obtained 8,472 peptides in total, with an

average number range from 3,241.5 to 5,342.6 peptides in the

20 F, 14 S, 20 M, and 8 H samples (Figures 2A, S1A, and S1B).

Wemapped these peptides to corresponding protein sequences,

and the reporter ionMS2module in theMaxQuant software pack-

agewas used to quantify proteins (Tyanova et al., 2016).We found

that 860 human proteins and 2 SARS-CoV-2 mature peptides or

proteins were quantified in at least one sample (Table S3), with

an average number of proteins ranging from 460.4 to 676.6 (Fig-

ures 2B and S1C). For cohort 1, lower numbers of peptides and

proteinswere identified inMT1,MT2, andH against other samples

(Figures 2A and 2B), probably because of batch effect.

To evaluate the reliability of the proteomic data in cohort 1, we

checked the raw MS/MS data and found that 6,705 peptides

(79.1%) could be matched by R2 spectral counts (Figure 2C).

The average spectral counts were calculated as 19.4 for all pep-

tides, indicating the proteomic results are highly reliable at the

peptide level. Also, we found that 472 proteins (54.8%) could

be traced and supported byR2 peptides, with an average num-

ber of 10.0 peptides (Figure 2D). Thus, our quantification results

are also highly reliable at the protein level. The distribution of pro-

teins identified in different samples was analyzed, and we found

that up to 348 (40.4%) proteins were simultaneously quantified in

all the 62 samples (Figure 2E), indicating a high reproducibility of

the proteomic profiling for cohort 1.

To ensure the data quality, only 530 proteins mutually quanti-

fied in >70%samples (R44) were reserved for cohort 1. For each

protein, multivariate normal imputation (MVNI) was applied to

impute the missing values (Lee and Carlin, 2010). The prin-

cipal-component analysis (PCA) of the 62 samples in the 7

batches was performed by using 351 proteins quantified in all

samples with raw MS/MS values (Figure S1D), 348 proteins

with normalized expression values (Figure S1E), or the 530 pro-

teins after imputation (Figure S1F). Before normalization, it was

found that the batches 5, 6, and 7 were very close and M and

H samples were difficult to be separated (Figure S1D). After
Immunity 53, 1108–1122, November 17, 2020 1109



Figure 1. Study Design and Patients

(A) Overview of blood samples collection from COVID-19 patients (cohort 1), including F (n = 5), S (n = 7), M (n = 10) patients, and H volunteers (n = 8). T1–T4 mean

different sample collection time points. The workflow for processing the proteomic data were shown, including the plasma separation, TMT 11-plex labeling, LC-

MS/MS analysis, database search, and further computational analyses.

(B) The gender distribution of COVID-19 patients and H volunteers. The x axis represents different groups of cases, and the y axis represents the ratio of different

genders (female or male).

(C) The age distribution of different groups.

(D) The number of days between symptom onset and the sample collection with different time points. Data points indicate the data of single patient at each time

point and are presented as median with interquartile range (FT1–FT4, n = 5; ST1 and ST2, n = 7; MT1 andMT2, n = 10). The center line within each box shows the

median, and the top and bottom of each box represent the 75th and 25th percentile values, respectively. The upper and lower whiskers extend from the hinge to

the largest and smallest value no further than 1.5 times the distance between the first and third quartiles, respectively.

See also Table S1.
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normalization, the M and H samples could be unambiguously

distinguished, indicating the batch effect was greatly reduced

(Figure S1E). The imputation did not influence the separation of

different types of samples by normalization (Figure S1F). The F

and S samples were not completely separated (Figures S1E

and S1F), indicating the necessity of identifying potential bio-

markers for classification of COVID-19 cases. Of note, this

observation is consistent with the clinical observation that S

and F COVID-19 patients presented certain overlappedmanifes-

tations (Chen et al., 2020; Guan et al., 2020; Huang et al., 2020;

Wang et al., 2020a). The finally reserved proteins were analyzed
1110 Immunity 53, 1108–1122, November 17, 2020
by the hierarchical clustering method, and the results were visu-

alized in a heatmap (Figure 2F). From the results, it could be

found that a substantial number of proteins are differentially ex-

pressed in different types of plasma samples, indicating that sin-

gle biomarkers or biomarker combinations might be found from

the proteomic data.

Proteomic Alternations Associated with Clinical
Symptoms of F and S COVID-19 Cases
We used our plasma proteomic data of cohort 1 to identify sig-

natures of COVID-19 by analyzing plasma proteins that



Figure 2. Proteomic Profiling of Plasma from COVID-19 Patients and H Volunteers

(A and B) The distribution of numbers of quantified (A) peptides and (B) proteins in the 62 plasma samples. Error bars represent multiple independent samples, F

(n = 5), S (n = 7), M (n = 10), H (n = 8).

(C) The distribution of MS/MS spectral counts of quantified peptides.

(D) The distribution of peptide numbers of quantified proteins.

(E) The distribution of protein numbers in plasma samples.

(F) The heatmap of the finally reserved proteins.

See also Figure S1 and Tables S2 and S3.
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underwent significant fold changes (FCs) in F cases compared

with those of H subjects (FT1–FT4 versus H, |log2(FC)| > 0.5; un-

paired two-sided Welch’s t test; p < 0.05). A total of 195 differ-

entially expressed proteins (DEPs) were identified under this

condition, and the degree of differential expression of DEPs

was obviously reduced in M group compared with S or F group

(Figure S2A; Table S4), indicating that the alterations of plasma

proteins becamemore extensive in more severe or deteriorated

conditions. The DEPs were then subjected to Gene Ontology

(GO) (The Gene Ontology Consortium, 2019) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway (Kanehisa

et al., 2017) enrichment analyses. The GO terms and KEGG

pathways of DEPs were highly enriched in processes involved

in inflammation, immune cell migration and degranulation,

complement system, coagulation cascades, and energy meta-

bolism (Table S5). These results are consistent with the previ-

ous reports that acute inflammation and excessive immune

cell infiltration are associated with the severity of COVID-19 pa-

tients (Chen et al., 2020; Guan et al., 2020; Huang et al., 2020;

Wang et al., 2020a; Yang et al., 2020a).
Immunity 53, 1108–1122, November 17, 2020 1111



Figure 3. Proteomic Alternations Associated with Clinical Symptoms of F and S Cases

(A) GO-based enrichment analysis of DEPs shown in the term of biological processes (two-sided hypergeometric test; p < 0.001) and the number of counts (m >

10). GO terms were sorted by E-ratio.

(legend continued on next page)
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We found that two processes, platelet degranulation and the

complement and coagulation cascades, obtained the highest

enrichment ratio (E ratio) scores in the GO and KEGG analyses,

respectively (Figures 3A and 3B). Also, the proteins involved in

these two processes were more dramatically altered in FT1–

FT4 and ST1 compared to those in ST2, MT1, and MT2 (Figures

3C and 3D). These results were consistent with our clinical data

that the coagulation tests, including D-dimer, the prothrombin

time (PT), and the activated partial thromboplastin time (APTT),

showed significant abnormality in FT1–FT4 and ST1 compared

with those in ST2, MT1, MT2, and H (Figures 3E–3G; Table S6).

These findings imply that the dysfunction of platelet degranula-

tion and coagulation cascades are closely related with the

severity of COVID-19.

In addition to host proteins, we also identified two SARS-CoV-

2-encoded proteins, nsP2 and nsP7, in the plasma samples of S

(five out of seven S patients) and F groups (two out of five F pa-

tients), respectively, although neither of them could be found in

the samples of M or H groups (Figure S2B), suggesting that the

presence of these two viral proteins in patient plasma probably

contributes to COVID-19 pathogenesis.

Machine-Learning-Based Selection of Biomarker
Combinations for Classification of COVID-19 Cases
On the basis of the plasma proteomic data of cohort 1, we devel-

oped a new computational pipeline named Prioritization of

Optimal biomarker Combinations for COVID-19 (POC-19) for

identifying potential biomarker combinations to classify

COVID-19 cases (Figure 4A). POC-19 contains three steps,

including differential protein reservation (DPR) to select 112

highly ranked DEPs, candidate biomarker selection (CBS) to

generate 1,000 groups of initial biomarker combinations, and

final biomarker determination (FBD) to get the protein combina-

tion with the highest area under the curve (AUC) value from the 5-

fold cross-validation (Figure 4A). In the step of FBD, a widely

used machine learning algorithm, penalized logistic regression

(PLR) (Ning et al., 2020), was used for model training and param-

eter optimization.

For the classification of COVID-19 patients and H volunteers,

we identified a compact biomarker combination containing 4

proteins, including orosomucoid-1/alpha-1-acid glycoprotein-1

(ORM1/AGP1), ORM2, fetuin-B (FETUB), and cholesteryl ester

transfer protein (CETP) (Figure 4B). Using cohort 1, the 5-fold

cross-validation AUC values of this 4-protein combination to

distinguish F, S, M, and H groups were calculated as 0.952

(95% confidence interval [CI] = 0.892–0.987), 0.917 (95% CI =

0.873–0.955), 0.974 (95% CI = 0.901–0.992), and 0.983 (95%

CI = 0.916–1.000), respectively (Figure 4B). Moreover, the 5-

fold cross-validation AUC values of each of the 4 proteins were
(B) KEGG-based enrichment analysis of DEPs (two-sided hypergeometric test; p

(C and D) Plasma levels of proteins in each group in relation to H group and the ass

coagulation cascades (D).

(E–G) Clinical data of D-dimer (E), prothrombin time (PT) (F), and activated partia

points indicate the data of single patient at each time point and are presented as

MT2, n = 10). The center line within each box shows the median, and the top and

The upper and lower whiskers extend from the hinge to the largest and smallest v

respectively.

See also Figure S2 and Tables S4, S5, and S6.
determined, indicating that, even when being used alone, these

proteins can still be informative to distinguish different groups in

most cases (Figures S3A–S3D). To evaluate the reliability of the

machine-learning strategy, confusion matrices were illustrated,

and the results demonstrated that different samples could be

correctly classified in a high accuracy (Figure 4C). Moreover,

the PCA showed that the clustering of samples is clearly classi-

fied into different groups (Figure 4D), indicating the reliability of

POC-19 for distinguishing different COVID-19 groups and H

volunteers.

To validate the accuracy of the machine-learning-based clas-

sification of COVID-19 cases, we further collected 26 plasma

samples of a new cohort (cohort 2), including 9 F, 6 S, and 6 M

patients, together with 5 H volunteers (Figure 4E). The 26 plasma

samples were categorized into 3 batches for LC-MS/MS analysis

and database search, and the pooling mixture of the 62 samples

of cohort 1 was used as the control for each batch (Table S2).

The numbers of peptides and proteins were similar across

different samples in cohort 2 (Figures S3E–S3G). From the prote-

omic data, we found that the 4 proteins, including ORM1, ORM2,

FETUB, and CETP, were quantified in all samples (Table S3).

Thus, we directly used the relative abundance values of the 4

proteins to evaluate the performance of POC-19. The AUC

values were calculated as 0.941 (95% CI = 0.848–0.978), 0.825

(95% CI = 0.765–0.881), 0.842 (95% CI = 0.788–0.902), and

1.000 (95% CI = 1.000) for predicting F, S, M, and H cases,

respectively (Figure 4F). The corresponding confusion matrix

and PCA results also demonstrated that POC-19 exhibited a

promising accuracy on the independent cohort (Figures 4G

and 4H; Table S7).

The Biomarker Combinations for Prediction of Different
Clinical Outcomes of COVID-19 Patients
We sought to utilize POC-19 to predict different clinical out-

comes (e.g., S to F, M to S, and cases curable from the disease)

on the basis of the DEPs from cohort 1. As a result, we selected a

biomarker combination containing 3 proteins of CETP, S100A9,

and C-reactive protein (CRP), which reached an AUC value of

0.929 (95% CI = 0.867–0.975) to predict severe COVID-19 pa-

tients with or without fatal outcome (Figure 5A). The AUC values

of each protein in this combination to discriminate F from S (Fig-

ures S4A–S4C) or each F time point (FT1–4) from ST1 (Fig-

ure S4D) were also determined, ranging from 0.757 to 0.914.

To predict M to S outcome, POC-19 identified a 3-protein

combination containing zinc-a2-glycoprotein 1 (AZGP1),

ORM2, and complement factor I (CFI), either being used as a

combination or separately, with AUC values of 1.000 (95% CI =

1.000) (Figures 5D and S4E–S4G). Of note, patients in M group

were younger than those in S or F group (Figure 1C; Table S1),
< 0.001) and the number of counts (m > 5). KEGG terms were sorted by E-ratio.

ociated p values in the terms of platelet degranulation (C) and complement and

l thromboplastin time (APTT) (G) (y axis) in the indicated groups (x axis). Data

median with interquartile range (FT1–FT4, n = 5; ST1 and ST2, n = 7; MT1 and

bottom of each box represent the 75th and 25th percentile values, respectively.

alue no further than 1.5 times the distance between the first and third quartiles,
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consistent with multiple clinical observations (Guan et al., 2020).

If we consider age as a possible factor for discriminating S from

M cases, its AUC value is 0.792 (Figure S4H), although the AUC

value of the combination of the three proteins plus age is 1 (Fig-

ure S4I), same as that without considering age as a factor (Fig-

ure 5D). Thus, age is a factor, but not a decisive one, to interfere

with the effectiveness and accuracy of this 3-protein combina-

tion in our model.

In addition, we further prioritized a biomarker combination con-

taining serine proteinase inhibitor A3/a1-antichymotrypsin (SER-

PINA3/ACT), lymphocyte cytosolic protein 1/L-plastin (LCP1/

LPL), and peptidase inhibitor 16 (PI16), with an AUC value 0.947

(95%CI = 0.887–0.985) for predicting convalescence (Figure 5G).

The AUC values of individual proteins in this combination ranged

from0.832 to 0.941 (Figures S4J–S4L). Furthermore, the results of

confusion matrices and PCA of these biomarker combinations

showed high accuracy for classifying and clustering different

groups (Figures 5B, 5C, 5E, 5F, 5H, and 5I). Normalized expres-

sion of eachbiomarker in different groupswas shown in FigureS5.

The Alterations of Host Proteins in Plasma Are Linked
with COVID-19 Development
In addition to identifying promising biomarkers for COVID-19,

our work also revealed numerous alterations of host plasma pro-

teins that might contribute to the pathogenesis of COVID-19. For

instance, the plasma levels of ORM1, ORM2, S100A9, CRP,

AZGP1, CFI, SERPINA3/ACT, and LCP1/LPL were significantly

elevated in more severe COVID-19 conditions (Figures S5A–

S5H). Among them, ORM1, ORM2, S100A9, CRP, and SER-

PINA3/ACT are acute-phase proteins (APPs) whose alterations

in plasma are usually in response to inflammation, infection, or

tissue injury (Gabay and Kushner, 1999), although LCP1/LPL

and CFI are also involved in regulating immune responses. Be-

sides, AZGP1 is an adipokine functionally implicated in lipid

metabolism (Hassan et al., 2008; Liu et al., 2018), consistent

with our previous observation that host metabolism was altered

by COVID-19 (Wu et al., 2020a). Of note, the clinical data of CRP

obtained from the medical record of this cohort were consistent

with our proteomic results (Figure S5I; Table S6).

Besides these elevated plasma proteins, we also found the

levels of FETUB, CETP, and PI16 were significantly reduced in

more severe conditions (Figures S5J–S5L). FETUB is involved

in fatty acid metabolism and can suppress inflammation via in-

hibiting merprins (Choi et al., 2012; Karmilin et al., 2019; Meex

et al., 2015). CETP promotes lipid transfer between lipoproteins

and can act as an inhibitor of prolonged inflammatory response,

and the reduction of plasma CETP was associated with mortality
Figure 4. Identification of Potential Biomarker Combinations for the C

chine-Learning Strategy

(A) The workflow of POC-19, including DPR, CBS, and FBD to prioritize highly pot

penalties in PLR were adopted for model training and parameter optimization.

(B) From the 5-fold cross-validation, AUC values were calculated for the classific

(C) The confusion matrix of the 4-protein combination.

(D) The PCA analysis of the 4 proteins among different plasma samples.

(E) Overview of blood samples collection from cohort 2, including F (n = 9), S (n

(F) AUC values were calculated for the classification of F, S, and M COVID-19 pa

(G) The confusion matrix of the 4-protein combination in cohort 2.

(H) The PCA analysis of the 4 proteins among different plasma samples from co

See also Figure S3 and Tables S2 and S7.
in patients with severe sepsis (Martinelli et al., 2018; Venancio

et al., 2016). PI6 has been found to suppress chemotaxis of

some leukocytes, macrophages, and dendritic cells by inhibiting

the chemokine chemerin (Regn et al., 2016). Therefore, the

reduction of these proteins in patient plasma might also

contribute to elevated inflammation and/or metabolic disorder.

Validation of the Biomarkers of Different COVID-19
Outcomes
To further verify the biomarkers obtained from the proteomic

data, we expanded our findings in an additional cohort that in-

cludes 40 F, 40 S, and 40M patients plus 40 H volunteers (cohort

3) (Figure 6A). The number of days between symptom onset and

sample collection of different groups was shown in Figure 6B

and Table S8. Plasma samples from these patients were

collected and then subjected to ELISA analyses for detecting

the plasma levels of ORM1, AZGP1, CFI, FETUB, and S100A8/

S100A9, respectively. Of note, S100A9 and its partner S100A8,

which was also detected in our study, function as a heterodimer

that can be detected together. The ELISA results showed that

the plasma levels of ORM1, S100A8/S100A9, AZGP1, and CFI

were significantly elevated in more severe COVID-19 conditions,

although the level of FETUB was significantly reduced in more

severe ones (Figures 6C–6G; Table S8), which are consistent

with our proteomic findings.

Furthermore, the statistical significance of each of the 11

proteins was further tested by using one-way analysis of variance

(ANOVA) (p < 0.05). To control the familywise error rate (FWER), a

permutation test (times = 100,000) was conducted, and the

adjusted p values were calculated by Westfall and Young’s

step-down min P approach to correct for multiple hypothesis

testing (Oughtred et al., 2019). It could be found that all the pro-

teins were significant to classify different types of samples (Table

S9; p < 0.05; adjustedp < 0.05). One exceptionwasS100A9with a

non-significant value (p = 0.108; adjusted p = 0.113) in distinguish-

ing F and S samples, although the combination of CETP, S100A9,

and CRP achieved a promising accuracy to predict severe

COVID-19 patients with or without fatal outcome.

In summary, these results further confirmed the accuracy of

our proteomic data and, more importantly, validated that the bio-

markers identified in this study have promising potentials to clin-

ically monitor and evaluate the progression of COVID-19.

DISCUSSION

The pandemic of COVID-19 has been one of the worst public

health crises. It is of high priority to identify biomarkers that
lassification of COVID-19 Patients and H Volunteers by Using a Ma-

ential biomarker combinations. In the step of FBD, LASSO and ridge regression

ation of F, S, and M COVID-19 patients and H volunteers, respectively.

= 6), and M (n = 6) patients and H volunteers (n = 5).

tients and H volunteers based on cohort 2.

hort 2.
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Figure 5. Determination of Biomarker Combinations for Predicting Different COVID-19 Outcomes

(A–C) The receiver operating characteristic (ROC) curve (A), confusion matrix (B), and PCA plot (C) for the prediction of S to F outcome.

(D–F) The ROC curve (D), confusion matrix (E), and PCA plot (F) for the prediction of M to S outcome.

(G–I) The ROC curve (G), confusion matrix (H), and PCA plot (I) for the prediction of COVID-19 patients cured from the disease.

See also Figures S4 and S5 and Table S7.
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can monitor and predict the development of the disease and un-

derstand its pathogenesis. For this purpose, we conducted pro-

teomics to profile plasma protein alterations in response to

COVID-19 under different conditions and identified 11 host pro-

teins and a set of biomarker combinations that can serve as bio-

markers by using the machine-learning-based pipeline POC-19
1116 Immunity 53, 1108–1122, November 17, 2020
developed by us. These biomarkers can classify and predict

the outcomes of COVID-19. Moreover, the alternations of these

host proteins provide very valuable insight for the pathogenesis

of COVID-19. Strikingly, many biomarkers could be individually

used to distinguish or predict COVID-19 outcomes, indicating

that the alterations of these plasma proteins are closely linked



Figure 6. Serological Validation of COVID-19 Biomarkers

(A) Overview of blood samples collection from cohort 3, including F (n = 40), S (n = 40), and M (n = 40) patients and H volunteers (n = 40).

(B) The number of days between symptom onset and the sample collection with different time points.

(C–G) Plasma levels of the indicated proteins from the samples of cohort 3 were detected via ELISA. Data points indicate the data of single patient that are

presented asmedian with interquartile range (F, n = 40; S, n = 40; M, n = 40; H, n = 40). The center line within each box shows the median, and the top and bottom

of each box represent the 75th and 25th percentile values, respectively. The upper and lower whiskers extend from the hinge to the largest and smallest value no

further than 1.5 times the distance between the first and third quartiles, respectively. Data were analyzed by unpaired two-sided Welch’s t test. *p < 0.05; **p <

0.01; ***p < 0.001.

See also Tables S8 and S9.
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with the disease. Moreover, the accuracy of these biomarkers to

distinguish COVID-19 outcomeswere further validated via prote-

omics and ELISA using the plasma samples from two additional

cohorts of COVID-19 patients, respectively. These results

confirmed that the altered plasma proteins identified in this study

indeed reflect the authentic pathophysiological changes in

response to COVID-19 and minimized the possibility that the

host protein alternations were influenced by other factors. There-

fore, these proteins show promising potentials to be further

developed as clinical biomarkers, either individually or in combi-

nation, to closely monitor and evaluate the development of

COVID-19, thereby providing timely advice for clinical treatment.
Intriguingly, the alterations of many plasma proteins uncov-

ered here well correspond to the severity and pathophysiology

of COVID-19. For instance, multiple APPs showed significant

elevation in the plasma of patients with more severe outcomes.

Among them, CRP, ORM1, ORM2, and SERPINA3 are inflam-

matory factors that are controlled by multiple cytokines, such

as interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), IL-

6, and IL-6-related cytokines (Ceciliani and Lecchi, 2019; Cichy

et al., 1995; Fournier et al., 2000; Luo et al., 2015; Tyagi et al.,

2013; Yaprak et al., 2018), although S100A9 and its partner

S100A8, also identified here, can induce inflammatory cyto-

kines and immune cell migration (Wang et al., 2018). Moreover,
Immunity 53, 1108–1122, November 17, 2020 1117
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CFI is a key component of complement system (Lachmann,

2019) and LCP1/LPL is a critical regulator of T cell and alveolar

macrophage activation (Deady et al., 2014; Todd et al., 2016).

On the other hand, some negative regulators of inflammation,

such as FETUB, CETP, and PI16, showed a downward trend

along with the deterioration of the disease in this study. Be-

sides, many of these proteins, such as the APPs, CETP, and

PI16, also participate in platelet dysfunction/aggregation and

activation of coagulation cascades. Additionally, the signifi-

cantly altered proteins identified in this study are generally

involved in several major biological processes, of which the

identified biomarkers are included in the processes of different

immune responses, platelet degranulation and coagulation,

and metabolism (Figure 7). These results are in accordance

with previous clinical or autopsy observations that S COVID-

19 cases are frequently associated with massive intravascular

thrombus, hypoxemia, ARDS, sepsis, and multiorgan injury

(Guan et al., 2020; Ranucci et al., 2020; The Novel Coronavirus

Pneumonia Emergency Response Epidemiology Team, 2020;

Xu et al., 2020b), which are pathophysiologically associated

with cytokine release syndrome, alveolar macrophage activa-

tion, intravascular coagulation, and microthrombosis (Moore

and June, 2020).

Furthermore, based on our findings, it would be intriguing to

speculate that some significantly altered proteins and related

pathways could be promising therapeutic targets for COVID-

19. For example, some clinically approved anticoagulants,

such as proteinase-activated receptor-1 (PAR-1) antagonists,

antithrombin, and antifactor Xa, might ameliorate COVID-19

severity associated with intravascular coagulation and inflam-

mation. In addition, the S100A8/S100A9 complex is a danger-

associated molecular pattern (DAMP) that promotes inflamma-

tion, and its extracellular functions include neutrophil and leuko-

cyte recruitment, proinflammatory cytokine release, and

apoptotic induction (Wang et al., 2018). Given that plasma

S100A8 and S100A9 were significantly elevated in more severe

COVID-19 and the S100A8/S100A9 inhibitors, quinoline-3-car-

boxamide compounds, have shown promising outcomes in

treating inflammatory diseases with good safety records in clin-

ical trials (Bengtsson et al., 2012; Björk et al., 2009), targeting

S100A8/S100A9 might represent a promising strategy for treat-

ing severe or critically ill COVID-19 cases. Moreover, several

clinically approved antibiotics, such as vancomycin, lincomycin,

and erythromycin (Banères-Roquet et al., 2009), have been

bound to inhibit the plasma levels of ORMs/AGPs, including

ORM1/AGP1 and ORM2/AGP2, which might be helpful for alle-

viating symptoms. Future efforts should be made to test these

possibilities.

Limitations of Study
There are some limitations in our study. First, most of the

samples were collected from the patients in the early period

of COVID-19 outbreak. Due to the priority to save patients’

lives at that time, the number of plasma samples for proteo-
Figure 7. A Plasma Protein Regulatory Network Associated with COVI

In the network, the 173 DEPs were classified into 9 groups on the basis of the

metabolic process, platelet/neutrophil degranulation, blood coagulation, cell cyc

immune response. The color-coded circular boxes represent the 11 proteins in t
mic profiling was limited, and the samples of very early time

points or early acute phase (within 1 week from onset) of

this disease were omitted. Therefore, although we had used

three different cohorts and two different approaches (i.e.,

mass spectrometry and ELISA) to generate consistent results,

it would be ideal to involve more clinical samples, probably

from earlier time points and multiple centers, to further vali-

date the biomarkers we identified. Another possible drawback

of this work is that different therapeutic strategies used during

the treatment of different patients might affect the results,

although the protein alterations uncovered here are quite

consistent in different cohorts. Future studies should evaluate

the impacts of different therapies on host responses. In addi-

tion, the data variance exists in all omics studies. Actually, the

batch effect was not strong in our raw MS/MS data, because

an identical internal reference was used for all the 10 batches

of TMT labeling experiments. Besides statistical analyses, we

also performed additional experiments for validation, which

showed that the potential data variance did not affect our find-

ings. Lastly, the detailed roles of the biomarker proteins in the

pathogenesis of COVID-19 require further investigation or the

potential therapeutic targets, such as S100A8/S100A9 and

ORM1/ORM2, should be further elucidated or experimentally

validated.

In summary, this work provides a highly valuable proteomics

resource for the research community to better understand

COVID-19-associated host responses, sheds light on the patho-

genesis of SARS-CoV-2 infection, identifies a serial of valuable

biomarker candidates, and provides hints of potential therapeu-

tic strategies.
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PINA https://cbg.garvan.unsw.edu.au/pina N/A

Cytoscape 3.6.1 software https://cytoscape.org/ N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Xi Zhou

(zhouxi@wh.iov.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics and Human Subjects
All work performed in this study was approved by the Wuhan Jinyintan Hospital Ethics Committee and written informed consents

were obtained from patients. Diagnosis of SARS-CoV-2 infection was based on the New Coronavirus Pneumonia Prevention and

GraphPad Prism v8.0 https://www.graphpad.com N/A
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Control Program (6th edition) published by the National Health Commission of China (National Health Commission, 2020). H subjects

were recruited from healthcare workers and laboratory workers at Wuhan Jinyintan Hospital and Wuhan Institute of Virology, CAS,

none of whom had previously experienced SARS-CoV-2 infection.

Patient Samples
SARS-CoV-2-positive patients were enrolled in the study after diagnosis. The severity of COVID-19 was determined by the attending

doctors based on the clinical diagnostic guideline of Chinese Health Commission (6th edition) and previous studies (Xu et al., 2020a;

Zhou et al., 2020a), which reveal the clinical courses of COVID-19 patients.

Blood sample (%3 mL) from F patients were collected over the course of their disease at intervals of 3-5 days. Blood sample (%

3 mL) from the patients with S and M symptoms were collected at the time when the disease was most serious (3-7 days after hos-

pitalization) and the time before discharged. Single samples were collected from the patients in Cohorts 2 and 3 as well as H volun-

teers. All the patients in Cohorts 1 and 2 were also included in Cohort 3 for ELISA validation. The throat swabs and serological testing

of H volunteers were negative for SARS-CoV-2. All blood samples were collected after fasting overnight and by added with ethylene

diamine tetraacetic acid (EDTA) plus potassium (K+). All the blood samples were treated according to the biocontainment procedures

of the processing of SARS-CoV-2-positive samples.

METHOD DETAILS

Biosafety
All the blood samples were treated according to the biocontainment procedures of the processing of SARS-CoV-2-positive sample.

Sample preparation
Ten microliters of plasma were mixed with 190 mL reaction solution (1% SDC, 10 mM TCEP, and 40 mM CAA). The reaction

was performed at 60�C for 30 min for protein denaturation, disulfide bond reduction, and cysteine -SH alkylation. Protein

concentration was measured by Bradford method. The samples were diluted with equal volume of H2O. Trypsin was added

at a ratio of 1:50 (enzyme: protein, w/w) for overnight digestion at 37�C. After centrifugation (12,000 g, 15 min), the

supernatant was subjected to peptide purification using self-made desalting columns filled with Poly(styrene-divinylbenzene)

copolymer (SDB) materials as described (Rappsilber et al., 2007). The peptide eluate was vacuum dried and stored at

�20�C for later use.

TMT labeling was performed according to manufacturer’s instructions. Briefly, peptides were reconstituted in TMT reagent buffer,

and the samples were separately labeled with different TMT labeling reagents. The internal reference sample pooled from all the 62

samples of Cohort 1 (equal contribution) was labeled using channel 126 for each batch of TMT labeling experiment (Both Cohort 1

and 2), allowing comparison of relative protein abundance across different TMT experiments. The labeled samples were then mixed

and subjected to Sep-Pak C18 desalting. The labeling efficiency of each labeledmixturewas examined bymass spec identification of

�2 mg of themixture with TMT (N-terminal/K) as variable modifications. The labeling efficiency (calculated from the ratio of number of

TMT labeled sites divided by number of all the potential labeling sites) had to pass the threshold of 95% before proceeding to the

fractionation step. The remaining mixture for each group of TMT experiment was fractionated using high pH reverse phase chroma-

tography into 60 fractions and further concatenated into 20 fractions (by combining of fractions 1, 21 and 41; fractions 2, 22 and 42;

and so on) (Batth et al., 2014). Each fraction was vacuum-dried and stored at �80�C until MS analysis.

Before the protein denaturation, 20 mg of total plasma proteins were mixed with 5 3 SDS-PAGE loading dye (10% SDS, 500 mM

DTT, 50% Glycerol, 500 mM Tris-HCL and 0.05% bromophenol blue, pH 6.8), boiled for 10 min and then analyzed by 12% SDS-

PAGE. According to the SDS-PAGE results (Figures S1A and S3E), all bands were clear and homogeneous without protein degra-

dation. All the protein extractions of the 62 plasma samples were classified as Class A which represents the highest quality and

the proteomic profiling could be performed at least twice for each sample (Wang et al., 2020b).

LC-MS/MS analysis
LC-MS/MS data acquisition was carried out on a Q Exactive HF-X mass spectrometer coupled with an Easy-nLC 1200 system (both

Thermo Scientific) (Miao et al., 2019; Zhang et al., 2020b). Peptides were first loaded onto a C18 trap column (75 mm 3 2 cm, 3 mm

particle size, 100 Å pore size, Thermo) and then separated in a C18 analytical column (75 mm 3 250 mm, 3 mm particle size, 100 Å

pore size, Thermo). Mobile phase A (0.1% formic acid) and mobile phase B (80% acetonitrile, 0.1% formic acid) were used to estab-

lish a 90 min separation gradient (0 min – 8% B; 67 min – 30% B; 82 min – 45% B; 83 min – 90% B; 90 min – 90% B). A constant flow

rate was set at 300 nL/min. For the analysis in data-dependent acquisition (DDA) mode, each scan cycle consisted of one full-scan

mass spectrum (R = 120 K, AGC = 3e6, max IT = 50ms, scan range = 350–1800 m/z) followed by 20 MS/MS events (R = 45 K, AGC =

1e5, max IT = 86ms). High energy collision dissociation (HCD) collision energy was set to 32. Isolation window for precursor selection

was set to 1.2 Da. Former target ion exclusion was set for 45 s.

Database search
MS raw data were analyzed with MaxQuant (V1.6.6) using the Andromeda database search algorithm (Miao et al., 2019; Tyanova

et al., 2016). The human proteome database contained 20,366 Swiss-Prot/reviewed human protein sequences downloaded from
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the UniProt database (https://www.uniprot.org/proteomes/UP000005640, on March 17, 2020) (UniProt Consortium, 2019), whereas

the SARS-CoV-2 proteome database contained 12 protein sequences including ORF1ab (YP_009724389.1), ORF1a

(YP_009725295.1), S (YP_009724390.1), ORF3a (YP_009724391.1), E (YP_009724392.1), M (YP_009724393.1), ORF6

(YP_009724394.1), ORF7a (YP_009724395.1), ORF7b (YP_009725318.1), ORF8 (YP_009724396.1), ORF9 (YP_009724397.2), and

ORF10 (YP_009725255.1) derived from its CDS regions, including (https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2, on March

17, 2020) (Wu et al., 2020b). The two databases were concatenated and reverse decoy sequences were generated. Then, spectra

files were searched against the merged database using the following parameters: Type, TMT; Variable modifications, Oxidation (M),

Deamidation (NQ), Acetyl (Protein N-term); Fixed modifications, Carbamidomethyl (C); Digestion, Trypsin/P. The MS1 match toler-

ance was set as 20 parts per million (ppm) for the first search and 4.5 ppm for the main search; the MS2 tolerance was set as 20

ppm. Search results were filtered with 1% false discovery rate (FDR) at both protein and peptide levels. Proteins denoted as decoy

hits, contaminants, or only identified by sites were removed, and the remaining proteins were used for further analysis.

Enzyme-linked immunosorbent assay (ELISA)
Human protein ELISA kits were used to quantify plasma levels of endogenous protein according to manufacturers’ instructions.

Briefly, plasma samples were diluted according to the manufacturers’ dilution guideline. Plasma were diluted at 1: 400 for detec-

tion of AZGP1 and CF1, 1:10 or 1:40 for FETUB, 1:10 for S100A8/S100A9 and 1: 100000 for ORM1. Then, a total of 100 mL of fixed

dilution plasma sample were added to the precoated plates, and the plates were incubated at 37�C for 2 hr. After washing, 100 mL

biotinylated-specific antibody was added to each well, and the plates were incubated at 37�C for 1 hr. Followed by washing,

100 mL sterptravidin-HRP was added and incubated at 37�C for 1 hr. Finally, the OD value at 450 nm were determined after addi-

tion of 100 mL Tetramethyl-benzidine (TMB) reagent and stop solution. The standard curve of each protein was generated by

determination of OD values from serially dilutions of the standard samples with known protein concentrations provided by the

manufacturers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomic data normalization and imputation
For each batch of the plasma proteomic data, the abundance of a protein in one patient sample was normalized against its corre-

sponding abundance in the control sample to get the relative protein abundance, whichwas used for further analyses across different

batches. For each batch, proteins not detected in control were discarded. The normalized expression values of proteins in Cohorts 1

and 2 were present in Tables S3.

To ensure the data quality and maximally use the proteomic data, proteins quantified in < 70% samples of Cohort 1 were dis-

carded. To impute missing values of remaining proteins, we used a model-based method named MVNI, which assumes all data

points jointly following a multivariate normal distribution (Lee and Carlin, 2010). For each protein, the multivariate normal distribution

was modeled, and the missing values were imputed with the maximum likelihood estimation. The proteomic data imputation was

performed by the multivariate_normal function in scipy.stats, a powerful Python module for data statistics.

Statistical analysis of the quantitative proteomic data
For Cohort 1, we identified potential DEPs that were significantly altered in F cases against H volunteers. The mean values of the

relative abundances of each protein were calculated for FT1-FT4 and H samples, respectively. The FC value was calculated based

on the ratio of FT1-FT4/H, and proteins with |log2(FC)| > 0.5 were reserved. Because the variances might not be equal in FT1-FT4 and

H samples, the statistical significance was calculated for reserved proteins, using the unpaired two-sided Welch’s t test (p < 0.05)

(Table S4). For these proteins, the FC values of FT1/H, FT2/H, FT3/H, FT4/H, ST1/H, ST2/H, MT1/H andMT2/H were also calculated,

and corresponding p values were computed by the unpaired two-sided Welch’s t test (Table S4). The statistical analyses were con-

ducted by the ttest_ind function in scipy.stats. The multiple testing correction was not performed.

The enrichment analyses
The two-sided hypergeometric test was adopted for the enrichment analysis of the 195 DEPs. Here, we defined:

N = number of human proteins annotated by at least one term

n = number of human proteins annotated by term t

M = number of the 195 proteins annotated by at least one term

m = number of the 195 proteins annotated by term t

Then, the E-ratio was calculated, and the p value was computed with the hypergeometric distribution as below:

E� ratio =
m
M
n
N
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p value =
Xn

m0 =m

�
M
m0

��
N�M
n�m0

�
�
N
n

� ; ðE� ratio > 1Þ

In this study, only statistically enriched GO terms (p < 0.001, m > 10) and KEGG pathways (p < 0.001, m > 5) were considered. GO

annotation files (on 03 January 2020) were downloaded from the Gene Ontology Consortium Web site (http://www.geneontology.

org/), and we obtained 19,714 human proteins annotated with at least one GO biological process term. KEGG annotation files

(released on 4 December 2017) were downloaded from the ftp server of KEGG (ftp://ftp.bioinformatics.jp/), which contained 6,956

human annotated genes.

Performance evaluation
To evaluate the accuracy of POC-19, true positive (TP), true negative (TN), false positive (FP) and false negative (FN) numbers were

counted. Then, we calculated six measurements, including sensitivity (Sn), specificity (Sp), accuracy (Ac), positive predictive value

(PPV), negative predictive value (NPV), Mathew correlation coefficient (MCC) as below:

Sn =
TP

TP+FN
; Sp=

TN

TN+FP
; Ac=

TP+TN

TP+FP+TN+FN
;

PPV =
TP

TP+FP
; NPV =

TN

TN+FN
MCC =
ðTP3TNÞ � ðFN3FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FNÞ3 ðTN+FPÞ3 ðTP+FPÞ3 ðTN+FNÞp

The 5-fold cross-validation was performed on Cohort 1, and Sn, Sp, Ac, PPV, NPV andMCC values were calculated (Table S7). The

ROC curve was illustrated based on Sn and 1-Sp scores. For each AUC value, the 95% CI was computed with 1000 stratified boot-

strap replicates. The PCA analysis was implemented in Scikit-learn 0.22.1 (https://scikit-learn.org/stable/), a powerful package for

data mining and analysis.

The prioritization of biomarker combinations by POC-19
For the identification of different types of biomarker combinations, we first classified the proteomic datasets of FT1-FT4, ST1, ST2,

MT1, MT2 and H into different groups. (i) For the classification of COVID-19 patients, FT1-FT4 of F patients, ST1 of S patients, MT1 of

M patients and H were included. ST2 and MT2 were not included because these blood samples were collected from the patients

shortly before discharged from the hospital and could not faithfully reflect the disease peak. For each group, its corresponding pro-

teomic data were taken as positive data, where the remaining data were regarded as negative data. (ii) For the identification of the

biomarker combination to predict S to F outcome, we took FT1-FT4 that reflect the clinical deterioration of F patients as positive data,

while ST1 that reflect the disease peak of S patients was taken as negative data. (iii) To predict M to S outcome, we took ST1 and FT1

as positive data, and MT1 as negative data, respectively. The clinical characteristics of S patients at ST1 and F cases at FT1 were

similar, which reflect the disease peak of S and/or more S patients. MT1 reflect the disease peak of M patients. (iv) To predict COVID-

19 patients curable from the disease, we took MT2 as positive data, and MT1, ST1 and FT1 as negative data, respectively.

POC-19 is a three-step pipeline, including DPR, CBS, and FBD. In the step of DPR, we compared the proteomic data of FT1-FT4 to

H, and reserved highly potential DEPs as a candidate reservoir (|log2(FC)| > 0.8, unpaired two-sidedWelch’s t test, p < 0.01). To avoid

over-fitting, the number of proteins in a combination should be much smaller than the sample size. Thus, CBS was implemented to

select and optimize different sets of biomarker combinations with% 5 proteins. From the candidate reservoir, we randomly select 5

proteins to form a potential combination, and the initial weight value of each protein was set to 1. For each type of biomarker com-

bination identifications, 1000 candidate combinations were prepared, respectively.

In the last step, the 5-fold cross-validation was conducted formodel training, parameter optimization, and performance evaluation.

For each candidate combination, we randomly generated a training dataset and a testing dataset with a ratio of approximately 4:1.

The testing dataset was only used to evaluate the performance but not for training. The least absolute shrinkage and selection oper-

ator (LASSO, L1 regularization) penalty and the ridge regression (L2 regularization) penalty in PLR (Ning et al., 2020), were iteratively

used to optimize the weight values of the 5 proteins. To simplify the composition of a combination, one or multiple protein was

randomly dropped if the 5-fold cross-validation AUC value was increased. Such a procedure was repeatedly performed until the

AUC value was not increased any longer. Then, the AUC values of all the 1000 candidate combinations were determined, and the

final combination was determined based on the highest AUC value. The PLR algorithm was implemented in Python 3.7 with Sci-

kit-learn 0.22.1. The source code of POC-19 is available at: https://github.com/Ning-310/POC-19http://ictcf.biocuckoo.cn/HUST-

19.php. To test the statistical significance of each of proteins prioritized by POC-19, one-way ANOVA was conducted using the

f_oneway function in scipy.stats (p < 0.05). Then, a permutation-based approach, Westfall and Young’s step-down min P correction
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for multiple hypothesis testing (Oughtred et al., 2019), was adopted to calculate permutation adjusted p values (times = 100,000),

using the minP function in R package multtest (Oughtred et al., 2019).

Re-construction of a COVID-19-associated plasma protein network
Based on the functional annotations in UniProt, we classified the 195 DEPs into 9 classes, including platelet/neutrophil degranulation,

complement activation, immune cell migration, metabolic process, blood coagulation, other immune response, phagocytosis/endo-

cytosis, transport/cell adhesion, and cell cycle/proliferation. Human known protein-protein interactions (PPIs) were integrated from 7

public databases, including BioGrid (Oughtred et al., 2019), IID (Kotlyar et al., 2019), InBio MapTM (Li et al., 2017), Mentha (Calderone

et al., 2013), HINT (Das and Yu, 2012), iRefIndex (Razick et al., 2008) and PINA (Cowley et al., 2012). In total, we collected 1,771,193

PPIs of 18,839 human proteins from these databases. For the 195 DEPs, we extracted 1113 PPIs for 173 unique proteins, and the

plasma protein network modulated by COVID-19 was Constructed and visualized with Cytoscape 3.6.1 software package (Shannon

et al., 2003).

DATA AND CODE AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the iProX partner repository (Ma et al., 2019) with the dataset identifier PXD019106 (https://www.iprox.

org//page/project.html?id=IPX0002173000).
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