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Model-based analysis uncovers mutations altering
autophagy selectivity in human cancer
Zhu Han1,7, Weizhi Zhang2,7, Wanshan Ning 2, Chenwei Wang2, Wankun Deng2, Zhidan Li 1,

Zehua Shang 1, Xiaofei Shen3, Xiaohui Liu4, Otto Baba5, Tsuyoshi Morita 5, Lu Chen1, Yu Xue 2,6✉ &

Da Jia 1✉

Autophagy can selectively target protein aggregates, pathogens, and dysfunctional organelles

for the lysosomal degradation. Aberrant regulation of autophagy promotes tumorigenesis,

while it is far less clear whether and how tumor-specific alterations result in autophagic

aberrance. To form a link between aberrant autophagy selectivity and human cancer, we

establish a computational pipeline and prioritize 222 potential LIR (LC3-interacting region)

motif-associated mutations (LAMs) in 148 proteins. We validate LAMs in multiple proteins

including ATG4B, STBD1, EHMT2 and BRAF that impair their interactions with LC3 and

autophagy activities. Using a combination of transcriptomic, metabolomic and additional

experimental assays, we show that STBD1, a poorly-characterized protein, inhibits tumor

growth via modulating glycogen autophagy, while a patient-derived W203C mutation on LIR

abolishes its cancer inhibitory function. This work suggests that altered autophagy selectivity

is a frequently-used mechanism by cancer cells to survive during various stresses, and

provides a framework to discover additional autophagy-related pathways that influence

carcinogenesis.
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Macroautophagy (hereafter referred to as autophagy) is
an evolutionarily conserved catabolic process and is
characterized by the formation of double-membrane

vesicles known as autophagosomes1,2. Whereas autophagy occurs
at a basal level in all cells, it is induced by many extracellular and
intracellular stimuli3. In addition to starvation-induced bulk
autophagy, autophagy can also selectively target many parts of
cells as cargoes for degradation, ranging from damaged organelles
to pathogens inside vacuoles or the cytosol, from misfolded
proteins to specific inflammatory signaling molecules1,2. Thus,
autophagy plays diverse functions in cells and is critical for
maintaining cellular, tissue, and organismal homeostasis. Dysre-
gulation of autophagy has been linked to the pathogenesis of a
broad range of diseases, in particular cancer, neurodegenerative
diseases, and metabolic diseases1,2.

Cargoes are targeted by selective autophagy through a variety
of mechanisms, including utilizing the LC3-interacting region
(LIR) motif, ubiquitin-interacting motif, or binding to the TRIM
family proteins4–8. Among them, the LIR motif, also named as
ATG8-interaction motif (AIM), is the best-characterized one. LIR
is a short peptide sequence binding to members of the Atg8
family, comprising the microtubule-associated protein 1 light
chain 3B (MAP1LC3B/LC3) analogs or γ-aminobutyric acid-
receptor associated proteins (GABARAPs)5,6. In addition to
substrates for selective autophagy, many autophagy-related
(ATG) proteins and autophagy regulators also contain the LIR
motif5,6,9. Thus, the LIR–LC3 interaction is essential for the
formation, transport, and maturation of autophagosomes.
Genetic mutations in LIR motifs may significantly alter the
binding affinity to LC3, thereby altering the autophagy selectivity
and contributing to the pathogenesis of multiple diseases, such as
neurological disorders. For example, an L341V missense muta-
tion found in the LIR motif of sequestosome 1 (SQSTM1/p62),
identified in a patient with sporadic amyotrophic lateral sclerosis,
disrupts the binding to LC3B and inhibits p62 recruitment into
autophagosomes10.

The involvement of autophagy in tumor pathogenesis is well-
established, which may promote or suppress carcinogenesis
depending on the cancer type and stage. Activation of autophagy
enables cancer cells to survive under stresses, including nutrient
deprivation, hypoxia, or anti-cancer treatment11. However, sup-
pression of autophagy can also promote tumorigenesis through
accumulating genotoxic cellular wastes and facilitating additional
genomic mutations12,13. The dual functions of autophagy in
cancer pathogenesis is also supported by the analysis of the
genome, transcriptome, and proteome of human cancer samples,
which revealed many recurrently altered ATG genes and autop-
hagy regulators in human tumors14,15. Despite these efforts, it
remains unknown whether DNA alterations present in the cancer
patient samples lead to changes in autophagy selectivity, and how
cancer cells benefit from these changes.

We hypothesize that a subset of human cancer mutations may
alter autophagy selectivity by impacting the LIR motif. Thus,
analysis of the mutations will not only confirm the roles of ATG
genes and autophagy regulators in various cancers but also dis-
cover new autophagy pathways that contribute to carcinogenesis.
To explore the link between aberrant autophagy selectivity and
human cancer, we develop a pipeline named “inference of cancer-
associated LIR-containing proteins” (iCAL), which integrates a
new algorithm named “prediction of the LIR motif” (pLIRm), a
model-based algorithm named pLAM to predict LIR motif-
associated mutations (LAMs), a pan-cancer analysis, and cell- and
animal-based validations. Using iCAL, we have identified 148
LIR-containing proteins (LIRCPs) that carry single point muta-
tions within the LIR motif, including some well-established ATG
genes and autophagy regulators as well as many novel candidate

genes. Among these candidate genes, we functionally confirm that
starch-binding domain-containing protein 1 (STBD1), a gene
involved in transporting glycogen to lysosomes, has a previously
unappreciated role in suppressing cancer growth. Mechanistically,
STBD1 inhibits tumor growth via metabolic reprogramming in
cancer cells, including rewiring glycolysis and the pentose phos-
phate pathway. Thus, our study provides an integrative approach
to discover and verify new autophagy pathways for the devel-
opment of cancer.

Results
An integrative pipeline for the analysis of cancer-associated
LIRCPs. In this study, we develop a new pipeline named iCAL to
form a link between aberrant autophagy selectivity and human
cancer (Fig. 1). First, we design a sequence-based tool named
pLIRm for predicting canonical LIR (cLIR) motifs that follow the
sequence pattern [FWY]XX[LIV]5,6,16 (Fig. 1). A previously
developed group-based prediction system (GPS) 5.0 algorithm
has been considerably improved to measure the peptide similar-
ity, and two additional approaches, including position weight
determination and scoring matrix optimization, are implemented
for performance improvement17. A widely used machine-learning
algorithm, penalized logistic regression18, is adopted for model
training and parameter optimization (Fig. 1). Then, we map
publicly available cancer mutations to human proteins and use
pLIRm to score cLIR motifs without (Original) or with mutations
(Mutant). We hypothesize that most cancer mutations located
around cLIRs might exhibit weak influence, and we develop a
model-based algorithm named pLAM to predict potential LAMs
that significantly increase (Type I) or decrease (Type II) their
binding potentials to LC3, using the Parzen window method
(Eq. 13)18. Then, a pan-cancer analysis is conducted to analyze
potential associations between LAM-containing LIRCPs and 37
major cancer types/subtypes (Fig. 1).

From the predicted LAM-containing LIRCPs, we select five
proteins to test their interactions with LC3 and autophagy
activities (Fig. 1). Among them, we focus on STBD1, a protein
implicated in glycogen autophagy (glycophagy) but poorly
characterized in other aspects. We use a combination of
transcriptomics, metabolomics and additional experimental
assays to study the role of STBD1 in tumor proliferation and
the underlying mechanism. We envision that our pipeline will be
useful to discover additional tumorigenesis pathways through the
misregulation of autophagy selectivity.

Sequence- and model-based prediction of cancer mutations
that alter cLIR motifs. From the literature, we manually collect
127 experimentally identified LIR motifs in 105 LIRCPs, includ-
ing 89 and 11 LIR motifs in Homo sapiens and Saccharomyces
cerevisiae, respectively (Fig. 2a, and Supplementary Data 1). Our
benchmark data set is much larger than iLIR19 and hfAIM20,
which only collected 27 and 36 known LIR motifs, respectively
(Fig. 2a). We use a sequence logo generator WebLogo (http://
weblogo.berkeley.edu/logo.cgi) to analyze the known LIR motifs,
and find that F/W/Y and L/I/V residues are highly informative at
positions 0 and +3 (Fig. 2b), which are consistent with the cLIR
motif [FWY]XX[LIV]5,6,16. Then, we use this data set for model
training and develop a new tool named pLIRm. We compare
pLIRm to other existing methods, including iLIR19 and hfAIM20,
3 reported LIR motifs and 4 sequence patterns in the eukaryotic
linear motif database21. The leave-one-out validation and 4-, 6-,
8-, and 10-fold cross-validations are performed for pLIRm
(Supplementary Data 2), whereas the accuracy values of other
tools are directly calculated using the same benchmark data set.
By comparison, pLIRm has a much higher area under the curve
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(AUC) value than iLIR (0.8797 vs. 0.7810), which is better than or
comparable with other previous methods (Fig. 2c). Thus, pLIRm
is more accurate than other existing methods. More details on the
comparison of pLIRm and other existing methods are also pre-
sent (Supplementary Note 1, Supplementary Fig. 1).

From The Cancer Genome Atlas (TCGA)22, International
Cancer Genome Consortium (ICGC)23 and Catalogue of Somatic
Mutations in Cancer (COSMIC)24, we obtain 2,963,952 non-
redundant missense single nucleotide variants (SNVs). We map
these cancer mutations to potential human LIRCPs predicted by
pLIRm and identify 842,789 potential LAMs located in or around
238,840 cLIRs of 18,806 human proteins (Fig. 2d). Then, we
develop a model-based algorithm named pLAM to prioritize
LAMs that significantly change the binding potentials of cLIR
motifs to LC3. For each LAM, the original and mutant peptides
are pairwisely scored by pLIRm, with normalized values of x and
y, respectively (Fig. 2e). We use the Parzen window method
(Eq. 13)18 to estimate the global distribution of x and y, and
calculate the significance of y values under a given x score. Under
a threshold of p value < 0.01, Type I and II LAMs are identified
based on the mutated score y > 0.5 and the original score x > 0.5,
respectively (Fig. 2e). Finally, reserved LAMs are mapped to
known ATG proteins and autophagy regulators. In total, we
identify 222 potential LAMs including 60 Type I and 162 Type II
LAMs that significantly change 172 cLIR motifs in 148 LIRCPs
(Fig. 2d and Supplementary Data 3).

Using the hypergeometric test, the enrichment analyses are
performed for the 148 potential LIRCPs based on the annotations of
gene ontology (GO) biological processes (Fig. 2f, p value < 10−5)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(Fig. 2g, p value < 10−7). The GO-based results demonstrate that
core autophagy processes are significantly over-represented,
indicating that ATG proteins and autophagy regulators have been
truly enriched in the finally-prioritized LIRCPs (Fig. 2f). KEGG-
based analysis reveals several enriched cancer-associated pathways,
indicating a strong correlation between autophagy and human
cancer (Fig. 2g).

LAM-containing LIRCPs play a potential role in human can-
cer. To analyze the associations of the 148 predicted LIRCPs in
human cancer, we download TCGA data sets including cancer
single nucleotide variants (SNVs), RNA sequencing (RNA-seq), and
DNA methylation profiles, as well as corresponding clinical out-
comes of 37 major cancer types/subtypes22. Survival analyses of the
association between the TCGA data and clinical outcomes are
performed for each layer of the omics data in both pan-cancer and
individual cancer levels (Supplementary Data 4, two-sided log-rank
test, SNV: p value < 0.05; RNA expression: p value < 10−4; DNA
methylation: p value < 10−4). The pan-cancer analysis reveals that
SNVs, RNA expressions, and DNA methylation levels of 18, 100,
and 108 LIRCPs are statistically associated with human cancer
(Fig. 3a). For individual cancer types, the results of RNA-seq-based
survival analyses for several LIRCPs are shown (Fig. 3a). It can be
found that the gene expression levels of a number of ATG proteins,
such as ATG2B, ATG4A, ATG5, ATG9A, and SNX4/SNX30
(Orthologs of Atg20/Atg24 in S. cerevisiae), are associated with the
survival rate in multiple cancer types (Fig. 3b).

Fig. 1 Major steps of iCAL. i Design a sequence-based predictor, pLIRm, and develop a model-based approach, pLAM; ii computational prioritization of
potential LAMs that significantly influence cLIR motifs, and then pan-cancer analysis and experimental validation of predicted LAM-containing LIRCPs;
iii combine transcriptomics, metabolomics with additional experimental assays to study the role and mechanism of STBD1 in tumor proliferation; Co-IP co-
immunoprecipitation.
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Fig. 2 Computational prioritization of highly potential LAM-containing LIRCPs. a A comparison of known LIR motifs and corresponding proteins collected
by iLIR19, hfAIM20, and pLIRm, as well as the distribution of our collected data in H. sapiens and S. cerevisiae and other species (Supplementary Data 1). b A
sequence logo of known LIR motifs was generated by WebLogo (http://weblogo.berkeley.edu/logo.cgi)76. c A comparison of pLIRm to other methods,
including iLIR19, hfAIM20, three LIR motifs (WXXL, [ADEFGLPRSK][DEGMSTV][WFY][DEILQTV][ADEFHIKLMPSTV][ILV], and [DE][DEST][WFY]
[DELIV]x[ILV])5,19,77, and four ELM motifs ([EDST].{0,2}[WFY]..P, [EDST].{0,2}[WFY][^RKPG][^PG][ILV], [EDST].{0,2}LVV, and [EDST].{0,2}
[WFY]..[ILVFY])21. d The model-based algorithm pLAM for predicting Type I and Type II LAMs that potentially increase and decrease the binding affinity
of cLIR motifs to LC3, respectively. e The distribution of numbers of potential LAMs, LIR motifs and LIRCPs reserved in each step of pLAM. f, g The GO-
and KEGG-based enrichment analyses of finally reserved LAM-containing LIRCPs.
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From the pan-cancer analysis, we find ten genes to be associated
with cancer in all three omics layers. For example, it can be clearly
found that SNVs in EGFR, a well-characterized oncogenic protein
tyrosine kinase, is highly associated with a lower survival probability
in pan-cancer (Fig. 3c). Although SNVs and RNA expression levels
of ATG4B are not detected to be associated with cancer, the lower

DNA methylation level of ATG4B is statistically correlated with a
higher survival rate, supporting its oncogenic role in tumorigenesis
(Fig. 3d). In particular, we observe STBD1, a protein involved in
glycophagy, to be potentially associated with human cancer
(Supplementary Data 4). At the pan-cancer level, it is found that
a higher mRNA expression level or a lower DNA methylation level
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of STBD1 is significantly associated with a higher survival
probability (Fig. 3e, f, Supplementary Data 4), indicating STBD1
might, in general, have tumor-suppressive functions. However, in
the individual cancer level, we find that the higher mRNA
expression level in glioma (GBMLGG) and lower DNA methylation
level in GBMLGG and brain lower-grade glioma (LGG) of STBD1
are significantly associated with a lower survival probability,
exhibiting an opposite result against that in the pan-cancer level
(Supplementary Data 4, Supplementary Fig. 2). Thus, STBD1 might
have different roles in distinct types of cancer.

LAMs in ATG4B, EHMT2, BRAF, and STBD1 impair their
interactions with ATG8. To test our predictions, we begin to
probe the interactions of ATG4B with LC3B. ATG4B has three
putative LIR motifs: LIR1 (8YDTL11) at the N-terminus, LIR2
(349FELV352) just C-terminal to the protease domain, and LIR3
localized within the C-terminus of the protein (388FEIL391)25

(Fig. 3g). A Type II (decrease binding) mutant found in cancer
samples is within the N-terminal LIR motif (Y8C). ATG4B Y8C
shows decreased binding to LC3B, with the bound LC3B being
37% of wild type (Fig. 3g). Overexpression of ATG4B Y8C or
enzymatically inactive mutant (C74S) impairs LC3B lipidation, as
defined by the ratio of LC3B II to LC3B I (Supplementary
Fig. 3a). These results collectively demonstrate that ATG4B
cancer mutation can diminish its LC3B binding and autophagy
activities.

To further assess whether our algorithm is useful to predict
new LIR motifs, we select three proteins that have no reported
LIR motifs: EHMT2, a histone methyltransferase; ERCC6, a
protein involved in DNA repair; and BRAF, a serine/
threonine–protein kinase (Supplementary Data 5). Among them,
our algorithm predicts that EHMT2 and ERCC6 have potential
LIR motifs (EHMT2: 262WETV265; ERCC6: 1282VEAE1285),
which are disrupted by cancer-associated mutations. In contrast,
a Type I mutation (P453L) in BRAF is predicted to gain
interaction with LC3 (Supplementary Data 5). Indeed, the co-
immunoprecipitation experiment reveals that EHMT2 WT can
specifically interact with GABARAPL1, and the association is
disrupted by the W262C mutation (Fig. 3h). Notably, the BRAF
P453L mutation shows an increased binding affinity with LC3B
and GABARAPL1 relative to BRAF WT (Fig. 3i). Finally, we do
not detect the interaction between ERCC6 with LC3B or
GABARAPL1 (Supplementary Fig. 3b). Taken together, our
experimental data demonstrate that our algorithm is helpful in
detecting known LIR motifs as well as predicting new motifs.

STBD1 is proposed to be an adaptor protein for glycogen
autophagy, but otherwise poorly studied26. STBD1 encompasses

an LIR sequence (203WEMV206) that interacts with
GABARAPL127, and a Type II mutant in the LIR sequence
(W203C) is derived from one of the 97 intestinal adenocarcinoma
samples in the COSMIC database24 (Fig. 3j, Supplementary
Data 3). This mutation has been annotated as “Pathogenic” with a
score of 0.97 predicted by FATHMM, a Hidden Markov Model-
based web-server to predict the functional impacts of both coding
and noncoding variants in the human genome28. Indeed, whereas
STBD1 WT robustly immunoprecipitates GABARAPL1, the
W203C mutant completely abolishes the interaction (Fig. 3j).
Co-localization analysis reveals that STBD1 WT strongly co-
localizes with GABARAPL1, and W203C disrupts the co-
localization (Supplementary Fig. 3c). Accordingly, overexpression
of Flag-tagged STBD1 WT, but not the W203C mutant, results in
an increased ratio of LC3B II/LC3B I (Supplementary Fig. 3d).
Furthermore, shRNA knockdown STBD1 decreases the ratio of
LC3B II/LC3B I, which can be rescued by the over-expression of
STBD1 WT, but not by that of STBD1 W203C (Supplementary
Fig. 3e). Overexpression of STBD1 WT, but not W203C, induces
degradation of p62, in the absence of BafA1 (Supplementary
Fig. 3f). The presence of BafA1, however, leads to the
accumulation of p62 in both cells (Supplementary Fig. 3f). These
data indicate that cancer-associated mutation of STBD1 on W203
abrogates its binding to GABARAPL1 and impairs its functions
in autophagy.

STBD1 inhibits tumor growth in multiple cancer cells and
in vivo. We next focus on STBD1, a proposed mediator of gly-
cophagy. Although the connection between autophagy and
human cancer is well-established, the functions of glycophagy in
cancer development are currently unknown. To investigate
whether the expression of STBD1 is altered in tumor samples, we
performed immunohistochemistry (IHC) staining to examine 27
colon cancer specimens and paired adjacent noncancerous tis-
sues. The expression of STBD1 at the protein level is significantly
lower in the cancer tissues in comparison with that in the adja-
cent non-carcinoma tissues (~56% of paracancer) (Supplemen-
tary Fig. 4a). In cells expressing STBD1 WT, glycogen strongly
co-localizes with GABARAPL1, and the co-localization is nearly
abolished in cells expressing STBD1 W203C (Fig. 4a). Further-
more, overexpression of STBD1 W203C, but not STBD1 WT,
increases the total glycogen levels in HCT116 cells, indicating that
STBD1 promotes glycogen metabolism via associating with
GABARAPL1 (Fig. 4b). Interestingly, overexpression of STBD1
WT, but not STBD1 W203C, significantly suppresses cell growth
and colony formation in lung cancer cell line A549 cells
(Fig. 4c–e, colony formation: plvx neo= 775 ± 30; STBD1

Fig. 3 LAMs in ATG4B, EHMT2, BRAF, and STBD1 found in cancer patients impair their interactions with ATG8. a The association of LAM-containing
LIRCPs and human cancer at SNV, RNA-seq, and DNA methylation levels. b The expression levels of LAM-containing ATG proteins and autophagy
regulators across different cancer types. c Mutated EGFR is associated with a shorter survival rate. d Low DNA methylation level of ATG4B is associated
with a longer survival rate. e High mRNA expression level of STBD1 is associated with a longer survival rate. f Low DNA methylation level of STBD1 is
associated with a longer survival rate. In c–f, significance (p value) is determined by a two-sided log-rank test. g HEK293T cells were co-transfected with
Flag-tagged ATG4B wild-type (WT) or Y8C and GFP-tagged LC3B for 24 h. All ATG4B plasmids were made in the F349A/F388A background to minimize
the roles of LIR2 and LIR3. Control cells were transfected with an empty vector. One-tenth of the cell lysate was prepared as input, and the rest was used
for immunoprecipitation with anti-Flag Sepharose 4B gel followed by immunoblotting with indicated antibodies. The band of LC3B was quantified by Image
J and normalized to the level of ATG4B WT, and labeled below the blots. Schematic representation of human ATG4B with red fonts indicating the LIR
motif. *IgG heavy chain. h, i HEK293T cells were co-transfected with Flag-tagged EHMT2 (160–360 aa) or BRAF and GFP-tagged LC3B or GABARAPL1 for
24 h. Control cells (vector) were transfected with an empty vector. One-tenth of the cell lysate was prepared as input, and the rest was used for
immunoprecipitation (IP) with anti-Flag Sepharose 4B gel followed by immunoblotting with indicated antibodies. Schematic representation of human
EHMT2 and BRAF with red fonts indicating the LIR motif. j HEK293T cells were co-transfected with Flag-tagged STBD1 WT or W203C and GFP-tagged
GABARAPL1 for 24 h. Control cells (vector) were transfected with an empty vector. One-tenth of the cell lysate was prepared as input, and the rest was
used for immunoprecipitation with anti-Flag Sepharose 4B gel followed by immunoblotting with indicated antibodies. Schematic representation of human
STBD1 with red fonts indicating the LIR motif. Experiments g–j were performed in triplicate.
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WT= 604 ± 16; STBD1 W203C= 699 ± 15). Similar results are
obtained in another lung cancer cell line, H1299 cells (Fig. 4f, and
Supplementary Fig. 4b, c).

To determine whether STBD1 plays a similar role in other
types of cancer cells, we survey the expression of STBD1 in

different cell lines and find that gastric cancer cell line HGC27 has
the lowest expression (Supplementary Fig. 4d). In order to
minimize the potential effect of endogenous STBD1, we thus
choose HGC27 cells for the following studies. Similar to our
results from lung cancer cell lines, over-expression of STBD1 WT,
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but not STBD1 W203C, in HGC27 cells, reduces the cell
proliferation rate (Fig. 4g, and Supplementary Fig. 4e, f). Thus,
STBD1 inhibits cell proliferation in multiple types of cancer cells.

To further confirm our observations, we test how the depletion
of STBD1 affects cancer growth. Using shRNA especially
targeting STBD1 (shSTBD1), we are able to effectively suppress
the expression of STBD1 in A549 cells (Fig. 4h). These cells grow
significantly faster, and form more colonies, relative to control
cells (Fig. 4i, j, colony formation: shControl= 588 ± 16;
shSTBD1= 958 ± 44). Silencing of STBD1 in H1299 cells also
yields similar results (Fig. 4k, and Supplementary Fig. 4g, h). To
further confirm our results using shSTBD1 cells, we generate two
STBD1 knockout-A549 clonal cell lines using the CRISPR–Cas9
technology (Supplementary Fig. 4i). These two cell lines display a
higher proliferation rate (Supplementary Fig. 4j). Mutation of
STBD1 (W203C) is found in patients with intestinal adenocarci-
noma (Supplementary Data 5), and we also examined colorectal
carcinoma cell line HCT116. As shown in Fig. 4l–n, knockdown
of STBD1 in HCT116 cells promotes cell growth and colony
formation (colony formation: shControl= 1635 ± 38;
shSTBD1= 2550 ± 94).

To test whether STBD1 inhibits cancer growth in vivo, we
establish a tumor xenograft model through subcutaneous injecting
HCT116 cells into immunodeficient mice. Depletion of
STBD1 results in enhanced tumor growth in mice (Supplementary
Fig. 5a, b; the weight of tumor: shControl= 0.44 ± 0.08;
shSTBD1= 0.7539 ± 0.10). Confirming this observation, immuno-
histochemical analysis reveals that the proliferation biomarker Ki67
is significantly higher in shSTBD1 tumors compared to shControl
tumors (Supplementary Fig. 5c, mean ± SD, shControl= 100,708 ±
16,735; shSTBD1= 115,212 ± 17,070). In addition, the TUNEL
assay shows that knockdown of STBD1 has no effect on the cell
apoptosis (Supplementary Fig. 5d, mean ± SD, shControl= 2.530 ±
0.911; shSTBD1= 2.476 ± 0.948).

To investigate whether STBD1 suppresses tumor growth via
glycophagy, the shSTBD1 HCT116 cells are overexpressed with
shRNA-resistant STBD1 WT (shSTBD1/WT) and W203C
(shSTBD1/W203C). In these cells, overexpression of STBD1 WT,
but not STBD1 W203C, significantly decreases cell growth
(Supplementary Fig. 6a, b). Furthermore, shSTBD1/WT markedly
suppresses tumor growth in the xenograft model, in comparison
with control (plvx neo) and shSTBD1/W203C (Fig. 4o, p; the weight
of tumor: plvx neo= 0.704 ± 0.181; STBD1 WT= 0.269 ± 0.145;

STBD1 W203C= 0.515 ± 0.244). IHC analysis further reveals that
the proliferation biomarker Ki67 decreases in shSTBD1/WT
samples, in comparison with control and shSTBD1/W203C
(Supplementary Fig. 6c, mean ± SD, plvx neo= 56,691 ± 13,593;
STBD1 WT= 48,967 ± 11,550; STBD1 W203C= 53,468 ± 7611).
Overexpression of STBD1 WT or W203C, however, does not
drastically affect cell apoptosis (Supplementary Fig. 6d). Taken
together, our results indicate that STBD1 has potential tumor-
suppressive activity through interacting with LC3B and participating
in glycophagy.

To further determine whether STBD1 regulates tumor growth via
a role in glycophagy, we test another mediator of glycophagy,
lysosomal acid α-acid glycosidase (GAA). When glycogen is
delivered to the lysosomal compartment, it is subsequently
degraded via GAA29. Using two different siRNAs especially
targeting GAA, we are able to achieve the knockdown efficiency
of 50–90%, measured by quantitative real-time polymerase chain
reaction (qRT-PCR) (Supplementary Fig. 7a, b). Similar to STBD1,
each of the two GAA siRNA-transfected HCT116 and A549 cells
grow significantly faster, relative to that of the siControl cells
(Supplementary Fig. 7c, d). Furthermore, GAA depletion also
promotes the formation of colonies (Supplementary Fig. 7e, f,
colony formation, HCT116: siControl= 176 ± 7; siGAA-1= 235 ±
10; siGAA-2= 237 ± 7; A549: siControl= 235 ± 11; siGAA-
1= 356; siGAA-2= 297 ± 10). Altogether, our studies discover
previously uncharacterized roles of glycophagy in tumor growth
and suggest that aberrant expression or mutations of related genes
could contribute to the pathogenesis of cancer.

STBD1 mutation or depletion favors the acquisition of mul-
tiple cancer hallmark traits. To understand how STBD1 inhibits
tumor growth, we compare the gene expression profiles of
shControl and shSTBD1 HCT116 cells using RNA-seq (Supple-
mentary Data 6). Three biological replicates of shControl and
shSTBD1 are separately clustered, and 454 genes are differentially
expressed, including 263 upregulated and 191 downregulated
genes (p value < 10−5) (Fig. 5a–d). KEGG-based enrichment
analysis indicates that these differentially expressed genes (DEGs)
are enriched in cancer-related pathways, such as transcriptional
misregulation and microRNAs in cancer, indicating a potential
role of STBD1 in cancer development. Glycolysis/gluconeogenesis
(KEGG: hsa00010) is another enriched process, consistent with
the role of STBD1 as a cargo receptor for glycogen (Fig. 5d).

Fig. 4 STBD1 inhibits tumor growth in vitro and in vivo. a Confocal immunofluorescence of HeLa cells co-transfected with mCherry-STBD1WT or W203C,
and GFP-tagged GABARAPL1 for 24 h. Glycogen was stained anti-glycogen monoclonal antibody IV58B6 (white) with Nuclei was stained with Hoechst
(blue). Images were captured using the Olympus FV-1000. Pearson’s coefficients of glycogen and GABARAPL1 were calculated using image J. Each dot
represents the value of one cell. Scale bar, 20 μm. b The glycogen content of HCT116 cells stably expressing plvx neo, STBD1 WT or STBD1 W203C,
respectively, was assessed using a glycogen assay kit. c Control A549 cells (plvx neo) and A549 cells stably overexpressing STBD1 WT or W203C were
lysed for immunoblotting to determine the protein levels of STBD1 and GAPDH. d Control A549 cells (plvx neo) and A549 cells stably overexpressing STBD1
WT or STBD1 W203C were cultured for 72 h. The cell viability was assessed using the MTT assay and normalized to that of 0 h. e Control A549 cells (plvx
neo) and A549 cells stably overexpressing STBD1 WT or STBD1 W203C were cultured for 20 days, then stained by crystal violet. The number of colonies
was analyzed using Image J. f, g Control H1299/HGC27 cells (plvx neo) and H1299/HGC27 cells stably expressing STBD1 WT or W203C were cultured for
72 h. Cell viability was then assessed using the MTT assay and normalized to that of 0 h. h The protein levels of STBD1 in shControl (control shRNA) and
shSTBD1 A549 cells were determined by immunoblotting. i shControl (control shRNA) and shSTBD1 A549 cells were cultured for 72 h. The cell viability was
then assessed using the MTT assay and normalized to that of 0 h. j shControl and shSTBD1 A549 cells were cultured for 20 days, then stained by crystal
violet. The number of colonies was analyzed using Image J. k shControl and shSTBD1 H1299 cells were cultured for 72 h. The cell viability was then assessed
using the MTT assay and normalized to that of 0 h. l The protein levels of STBD1 in shControl and shSTBD1 HCT116 cells were determined by
immunoblotting. m shControl and shSTBD1 HCT116 cells were cultured for 72 h. The cell viability was then assessed using the MTT assay and normalized to
that of 0 h. n shControl and shSTBD1 HCT116 cells were cultured for 20 days, then stained by crystal violet. The number of colonies was analyzed using
Image J. o Nude mice (n= 9) were injected subcutaneously on the back of the neck or both flanks with shSTBD1/plvx neo, shSTBD1/WT, or shSTBD1/
W203C HCT116 cells, respectively. Images show the dissected tumors and tumor weights 17 days after injection. p Tumor volume was measured over time
after injection in mice as in (o). Experiments in a–n were performed in triplicate. a–p Statistical data are presented as mean ± SD. Statistical comparisons
were performed using an unpaired t test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
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To further confirm our observations, we also compare the gene
expression profiles of shSTBD1/plvx neo, shSTBD1/WT, and
shSTBD1/W203C cells using RNA-seq (Supplementary Data 7).
Remarkably, 8 out of 14 pathways, including glycolysis/gluconeo-
genesis, enriched in the shSTBD1 cells are also found in the ones
that are differentially affected in shSTBD1/WT and shSTBD1/
W203C cells (Supplementary Fig. 8a–d). To further validate these
results, we perform quantitative RT-PCR and compare the

expression of multiple DEGs responsible for glycolysis/gluconeo-
genesis in three different groups: (1) shSTBD1 vs. shControl, (2)
shSTBD1/plvx neo vs. shSTBD1/WT, (3) and shSTBD1/W203C
vs. shSTBD1/WT cells (Fig. 5e). The three sets of comparisons
reveal a highly similar pattern, suggesting that STBD1 W203C
mutation leads to the loss of normal functions of STBD1, similar
to shSTBD1. Seven out of eight genes that we have examined,
including PGK1, ENO2, ALDOC, HK1, PFKP, LDHA, and

Fig. 5 Depletion of STBD1 alters multiple genes critical for glycolysis. a Three biological replicates of shControl and shSTBD1 HCT116 cells were clustered
together in RNA-seq. b Heatmap of differentially expressed genes in shControl and shSTBD1 HCT116 cells. c The numbers of down-regulated or up-
regulated genes in differentially expressed genes. d The KEGG-based enrichment analysis of biological pathway of differentially expressed genes. e mRNA
levels of several genes responsible for glycolysis were determined by RT-PCR and normalized using TUBB mRNA. These relative mRNA levels in shSTBD1
vs. shControl HCT116 cells, shSTBD1/W203C vs. shSTBD1/WT cells, and shSTBD1/WT vs. shSTBD1/plvx neo cells were shown. f Enrichment analysis of
cancer hallmark traits affected by STBD1 depletion. Representative hallmark genes are shown in the circle. g Protein levels of STBD1, AKT1, c-Myc, and
NFKB1 (p50) in shControl and shSTBD1 HCT116 cells were determined by immunoblotting and normalized using Tubulin or GAPDH. Experiments in
e, g were performed in triplicate. Statistical data are presented as mean ± SD. Statistical comparisons were performed using an unpaired t test. ***p < 0.001,
**p < 0.01, *p < 0.05.
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ALDOA, are elevated in at least one set of comparisons, consistent
with our RNA-seq results (Fig. 5e). The eighth gene, DLD, is
modestly decreased in two groups, shSTBD1/plvx neo vs.
shSTBD1/WT, and shSTBD1/W203C vs. shSTBD1/WT cells
(Fig. 5e). Overall, our data suggest that STBD1 inhibits cancer
growth, likely through altering gene transcription and rewiring the
glycolysis/gluconeogenesis pathway.

We obtain 377 known cancer hallmark genes from a well-curated
database named HOC30 and map them to our transcriptomic data
(Supplementary Data 6). For the 1611 DEGs with a relaxed
stringency (p value < 0.01), enrichment analyses demonstrate that
five cancer hallmark traits, including sustained proliferation,
genome instability, cell death, invasion and metastasis, and
metabolism, are markedly affected upon STBD1 depletion (Fig. 5f,
p value < 0.05). Two hallmark traits, sustained proliferation, and cell
death are validated to be affected by STBD1, through immunoblot-
ting of c-Myc (Fig. 5g). The c-Myc expression level is found to be
significantly upregulated in shSTBD1 cells (Fig. 5g). In addition, we
examine the expression of two hallmark genes: NFKB1 and AKT1.
Indeed, STBD1 depletion leads to up-regulation of oncogene AKT1,
whereas suppresses the expression of tumor suppressor NFKB1
(Fig. 5g), indicating that other pro-tumorigenic pathways are also
upregulated. Consistently, both IHC and immunoblotting analysis
reveal that the c-Myc level is significantly higher in shSTBD1
tumors relative to shControl tumors (Supplementary Fig. 9a, b, c-
Myc: shControl= 91,173 ± 23,991; shSTBD1= 147,159 ± 47,662).
Furthermore, STBD1 WT, but not W203C, suppresses the
expression of c-Myc (Supplementary Fig. 9c, d, c-Myc: plvx
neo= 72,789 ± 19,915; STBD1 WT= 62,204 ± 16,410; STBD1
W203C= 69,981 ± 18,519). Taken together, our results suggest
that STBD1 suppresses tumor growth by inhibiting multiple cancer
hallmark traits.

STBD1 depletion promotes glycolysis in cancer cells. The above
findings suggest that STBD1 depletion potentially leads to metabolic
reprogramming. To probe such changes, we first perform targeted
metabolomic profiling of shControl and shSTBD1 HCT116 cells,
each with three biological replicates (Fig. 6a, Supplementary
Data 8). More than 200 metabolites in various metabolic pathways,
including glycolysis, tricarboxylic acid (TCA) cycle, purine meta-
bolism, pyrimidine metabolism, and amino acids, are observed
(Fig. 6b, Supplementary Data 8). To trace the glycolytic flow in
cancer cells, we further perform an isotope tracing analysis using
stable 13C6-glucose labeling (Fig. 6c–f, Supplementary Data 8).
Knockdown of STBD1 leads to increased glycolytic intermediates,
as represented by 3-Phosphoglycerate/2-Phosphoglycerate (3-PG/2-
PG) m+ 3, phosphoenolpyruvate (PEP) m+ 3, and pyruvate m+
3 in the glycolysis pathway (Fig. 6c). Meanwhile, enhanced glucose
metabolism into TCA cycle, e.g., citrate m+ 2, aconitate m+ 2,
isocitrate m+ 2, and α-ketoglutarate (α-KG) (Fig. 6d), is observed,
as well as nucleotide biosynthesis through pentose phosphate
pathway, e.g., AMP m+ 5 in purine metabolism and UMP m+ 5
in pyrimidine metabolism (Fig. 6e, f). The unchanged intracellular
level of lactate m+ 3 (Fig. 6c) further confirms the enhancement of
glucose metabolism is biased into oxidative phosphorylation and
nucleotide biosynthesis, and the latter is required to make RNA and
DNA in proliferating cells in shSTBD1 cells. The results are highly
consistent with our observation in the transcriptomics (Fig. 6g). In
contrast, most essential amino acids are not altered by knockdown
of STBD1, based on the targeted metabolomic profiling (Supple-
mentary Fig. 10a). Taken together, depletion of STBD1 leads to
substantial reprogramming of glucose metabolism in cancer cells
through enhanced glycolysis.

Analysis of the medium reveals that the glucose level is lower in
shSTBD1 cells than that of shControl cells, whereas no significant

difference of lactate level is observed (Fig. 6h). Conversely,
overexpression of STBD1 WT, but not W203C, increases the
glucose level in the medium (Supplementary Fig. 10b). As
deletion of STBD1 can enhance glycolysis in cancer cells, we
speculate that shSTBD1 HCT116 is more dependent on
exogenous glucose. Indeed, glucose starvation impairs the growth
of shSTBD1 cells more significantly than shControl cells (Fig. 6i,
and Supplementary Fig. 10c). Since shSTBD1 HCT116 cells are
more dependent on glycolysis than shControl cells, depletion of
STBD1 may sensitize cancer cells to glycolysis inhibition. To test
this hypothesis, we treat cells with 2-deoxy-d-glucose (2-DG), a
glucose analog that inhibits phosphorylation of glucose by
hexokinase31. Whereas 2-DG inhibits the growth of shSTBD1
and shControl HCT116 cells, the proliferation of shSTBD1 cells is
decreased more than shControl cells under various concentra-
tions of 2-DG (Fig. 6j). These results are further confirmed by
STBD1 knockout A549 cells, in which we find that both
independent clones display more sensitivity than control cells
(Supplementary Fig. 10d). Altogether, we discover that STBD1
has putative tumor-suppressive functions, and our findings
indicate that mutation or lower expression of STBD1 may
promote cancer growth in patients. Targeting glycolysis could
represent a promising approach to treat these patients.

A LIRCP-regulating network links autophagy selectivity and
tumorigenesis. Understanding the mechanisms whereby the
autophagy network interfaces with cancer is a long-standing
challenge. The central questions include whether the autophagy
pathways are targets for recurring molecular alteration in human
cancer, and which pathways are targeted1,2. To identify the
autophagy pathways perturbed in human cancer, we model a
LIRCP-regulating network by integrating protein–protein inter-
actions (PPIs) and transcriptional regulations among the 148
identified LIRCPs, 7 LC3 proteins, and 14 proteins regulated by
STBD1 since both mechanisms are important for regulating
autophagy32–35 (Fig. 7).

Based on the functional annotations in UniProt36, we classify
148 LIRCPs into nine classes, including apoptosis-associated
events, autophagic vacuole assembly, cell cycle/proliferation, small
GTPase-associated signaling, inflammatory/immune response,
metabolic pathways, PI3K/AKT/mTOR signaling, biomolecule/
vesicle transport, and glycolysis. The seven LC3 proteins are
categorized into the class of autophagic vacuole assembly, based
on their important role in autophagosome formation. The 14
downstream proteins of STBD1 are also included. Known or
predicted PPIs and transcriptional regulations between transcrip-
tion factors and target genes are integrated from 8 public
databases, including ARN32, BioGrid37, IID38, inBio MapTM39,
Mentha40, HINT41, iRefIndex42, and PINA43. In total, we obtain
2204 PPIs and 91 transcriptional regulations for the 169 proteins,
in which known cancer hallmark proteins are also indicated35

(Fig. 7). From the network, it can be found how LIRCPs affect
human cancer through the nine functional aspects, and highlight
the functional importance of STBD1 in inhibiting cancer growth
through modulating glycophagy (Fig. 7). Our work indicates
cancer cells frequently alter autophagy selectivity for survival.

Discussion
The importance of autophagy for cancer initiation and growth
cannot be understated. Autophagy helps to maintain normal cell
homeostasis by removing oncogenic substances, such as toxic
unfolded proteins and damaged organelles44. Autophagy also
plays important role in malignant transformation, tumor pro-
gression, and treatment response. Studies using human cancer
samples have also revealed that multiple ATG genes and
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autophagy regulators aberrantly expressed or significantly muta-
ted in human tumors14,15. However, prior to our work, it was
unknown whether naturally occurring mutations exist in cancer
samples that specifically alter autophagy selectivity. In this study,
we implement a new pipeline named iCAL that integrates a
sequence-based predictor, a model-based computational method,

publicly available cancer mutations, and multiple experimental
approaches. This pipeline allows us to discover 222 LAMs in 148
ATG proteins and autophagy regulators that have the potential to
affect carcinogenesis through modulating autophagy selectivity.
To the best of our knowledge, the identification of STBD1
W203C, ATG4B Y8C, and many others in our database
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represents the first example. The wild distribution of such
mutations in cancer samples suggests that altering of autophagy
selectivity represents a common mechanism for the pathogenesis
of multiple cancers.

STBD1 is the cargo receptor for glycogen autophagy, which is
responsible for transporting glycogen into the lysosome to pro-
duce non-phosphorylated glucose26,27. Glycophagy is the glycogen
breakdown pathway alternative to gluconeogenesis45,46. Although
the functions of glycophagy in neonatal development, in which the
gluconeogenesis machinery is not fully established, have been long
appreciated, its roles in tumorigenesis were unclear47–49. By
demonstrating that STBD1 and GAA have potential tumor-
suppressive functions, we identify the previously uncharacterized
connection between glycophagy and tumorigenesis. Depletion of
STBD1 or disruption of its association with LC3 leads to
enhancement of glycolysis and likely the pentose phosphate
pathway in cancer cells, and promotes cancer growth. Our data are
consistent with the observation that the expression of STBD1 is
significantly downregulated in a diverse array of human tumors,
and that the expression level of STBD1 is associated with cancer
patients’ survival probability (Fig. 3e, f). The discovery that 2-DG,
a glycolysis inhibitor, significantly inhibits the growth of STBD1
low-expressing cancer cells, indicates that targeting glycolysis
could represent an effective personalized targeting strategy for the
patients with STBD1 low-expressing tumors (Fig. 6h).

Why does the inhibition of glycophagy contribute to tumor-
igenesis? Glycogen is degraded via two major pathways: the
cytosolic pathway that decomposes glycogen into glucose-1-
phosphate and glucose, and glycophagy that decomposes glyco-
gen into glucose. Therefore, it is expected that glycophagy inhi-
bition could cause metabolic reprogramming. Indeed, we find
that the depletion of STBD1 increases the expression of multiple
key glycolytic enzymes, and enhances the TCA cycle and
nucleotide biosynthesis. Suppression of STBD1—either via
knockdown or expression of the mutant—also promotes the
expression of multiple cancer hallmark genes, including c-Myc,
NFKB1, and AKT1, although the exact underlying mechanisms
remain to be determined. We show that STBD1 suppression
promotes cancer cell proliferation, detected by the MTT assay
and the proliferation marker Ki67. It should be noted that the
MTT assay measures reducing power, in particular, NADH in
mammalian cells. Therefore, cautions must be taken to use the
MTT assay when the metabolic states of cells are altered. Other
methods of detecting cell proliferation, such as the detection of
Ki67 and/or BrdU labeling, should be used at the same time.

Although we focus on testing the role of STBD1-mediated
autophagy in cancer in this study, our rich dataset opens up the
discovery of other uncharted autophagy pathways that regulate the
development of cancer. For instance, TBC1D15 is an established
mitophagy regulator and is also demonstrated as an oncoprotein

by a separate study50–52. However, it is unknown whether
TBC1D15 exerts its pro-cancer activity through mitophagy. The
identification of a cancer mutation within the LIR motif in
TBC1D15 indicates that the disruption of TBC1D15 function in
mitophagy may contribute to cancer development. Similarly, we
have identified two Type II mutations with the LIR motif of
TP53INP2 (tumor protein p53-inducible nuclear protein 2),
indicating that TP53INP2 likely functions through bridging
autophagy and apoptosis53. Furthermore, many proteins in our
list have not been explored for their functions in cancer devel-
opment, and delineation of their mechanisms could open up new
directions for the field. One of such examples is TBC1D25, which
is involved in the fusion of autophagosomes with endosomes and
lysosomes54. It contains an LIR motif, which has two deleterious
mutations in cancer samples based on our prediction. However,
the functions of TBC1D25 in cancer development have not been
explored. In summary, our work discovers a new tumorigenesis
mechanism through the misregulation of autophagy selectivity.
We expect that our study will benefit the discovery of novel
autophagy-related pathways in cancer, and open new avenues that
selectively target autophagy sub-routines for cancer therapeutics.

Methods
Data collection and preparation. First, we search PubMed with a number of
keywords, such as “LIR”, “AIM atg8”, “Atg8-family interacting”, “LC3-interacting”,
and “LIR-containing”. The full texts of all retrieved papers are carefully curated to
collect experimentally identified LIR motifs. Also, we integrate 27 and 36 reported
LIR motifs from iLIR19 and hfAIM20, respectively. To ensure the data quality,
putative LIR motifs maintained in the iLIR database55 and iLIR@viral56 are not
included. Then, we map known LIR motifs to primary protein sequences down-
loaded from UniProt database36 to pinpoint their exact positions (On October 17,
2019). After redundancy clearance, we obtain 127 known LIR motifs including 121
cLIR and 6 atypical LIR (aLIR) motifs in 105 unique LIRCPs (Supplementary
Data 1).

In this study, we hypothesize that short flanking peptides around core LIR
motifs might be essential for interacting with LC3/Atg8, and we define a LIR motif
peptide LMP(7, 7) as a cLIR or aLIR tetrapeptide flanked by 7 residues upstream
and 7 residues downstream, with a total length of 18 aa to balance the training time
and accuracy. Before model training, we regard LMP(7, 7) entries derived from all
known cLIR and aLIR motifs as positive data, and we take LMP(7, 7) items around
other putative cLIR motifs in the same proteins as negative data. Then, we
construct a high-quality benchmark data set, containing 127 positive motifs and
931 negative motifs from 105 LIRCPs. For each known LIRCP, its gene names,
UniProt accession number, LIR motif positions, LMP(7,7) item, species
information, and PubMed IDs (PMIDs) of original references are present
(Supplementary Data 1).

Performance measurements. To evaluate the accuracy of pLIRm, we calculate six
measurements, including accuracy (Ac), sensitivity (Sn), specificity (Sp), positive
predictive value (PPV), negative predictive value (NPV) and Mathew correlation
coefficient (MCC) as below

Ac ¼ TPþ TN
TPþ FPþ TNþ FN

ð1Þ

Sn ¼ TP
TPþ FN

ð2Þ

Fig. 6 Depletion of STBD1 promotes glycolysis in colorectal cancer cells. a The number of metabolites identified in each sample by targeted metabolomic
profiling. Three biological replicates were performed. b Heatmap showing metabolites in several major pathways detected by targeted metabolomic profiling,
from shSTBD1 and shControl HCT116 cells, respectively. For each metabolite, its levels in the six samples were normalized using the z-score method. c–f
shControl and shSTBD1 HCT116 cells were cultured with 13C6-glucose-containing medium for 12 h, and then cells were harvested for analysis by LC–MS/MS. 3-
PG 3-phosphoglycerate, 2-PG 2-phosphoglycerate, PEP phosphoenolpyruvate, α-KG α-Ketoglutarate. g Mapping metabolites and genes whose abundance
changed significantly in shSTBD1 HCT116 cells vs. shControl HCT116 cells to a pathway map. Metabolites and genes (p < 0.05) were shown. Filled circles, 13C-
labeled carbon atoms; open circles, unlabeled carbon atoms; blue, downregulated; red, upregulated. h shControl and shSTBD1 HCT116 cells were cultured for
48 h, and then the medium was collected to determine the concentration of glucose and lactate concentrations. The lactate or glucose concentration was
normalized to the total protein concentration, and the relative concentration was further normalized to that of the shControl HCT116 cells. i shControl and
shSTBD1 HCT116 cells were cultured in a low glucose medium for 72 h. The cell viability was then assessed using the MTT assay and normalized to that of cells
grown in a high glucose medium. j shControl and shSTBD1 HCT116 cells were incubated in indicated concentrations of 2-DG for 48 h. The cell survival rate in
each group was evaluated by the MTT assay, and normalized to that of the control group (0mM). Experiments h–j were performed in triplicate. Statistical data
are presented as mean ± SD. Statistical comparisons were performed using an unpaired t test. ***p < 0.001, **p < 0.01, *p < 0.05, ns (not significant), p > 0.05.
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Sp ¼ TN
TNþ FP

ð3Þ

PPV ¼ TP
TPþ FP

ð4Þ

NPV ¼ TN
TNþ FN

ð5Þ

MCC ¼ TP ´TNð Þ � FN ´ FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ ´ TNþ FPð Þ ´ TPþ FPð Þ ´ TNþ FNð Þ

p ð6Þ

The LOO validation and 4-, 6-, 8-, and 10-fold cross-validations are conducted.
The receiver operating characteristic curves are illustrated based on Sn and 1-Sp
values, and the AUC scores are calculated.

Fig. 7 A LIRCP-regulating network that connects autophagy and carcinogenesis. The 148 LAM-containing ATG proteins and autophagy regulators were
classified into nine groups based on their major biological function. Both PPIs and transcriptional regulations were incorporated for these proteins if
available. The downstream pathway, glycolysis, and corresponding proteins in the pathway regulated by STBD1 were also integrated.
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A modified GPS algorithm. In 2004, we developed the GPS 1.0 algorithm for
prediction of kinase kinase-specific phosphorylation sites57. Based on a hypothesis
that similar short peptides might share similar biological properties and functions,
we used an amino acid substitution matrix, e.g., BLOSUM62, to measure the
sequence similarity among short peptides around known or putative phosphor-
ylation sites57. We adopted this basic scoring strategy in all versions of GPS
algorithms and incorporated more methods to improve the accuracy in later
versions58. In GPS 5.0 (http://gps.biocuckoo.cn/)17, we developed two additional
approaches including PWD and SMO in order to improve the accuracy, besides the
basic scoring strategy. PWD could efficiently optimize the position-specific weight
values of short peptides around phosphorylation sites, whereas SMO could rapidly
determine the scoring matrix. We used the PLR algorithm with the ridge (L2)
penalty to optimize parameters17.

Here, we modify the original GPS 5.0 algorithm to comprise two parts. In the
part of the basic scoring strategy, we measure the average similarity score (S) of a
given LMP(7, 7) item against all known LMP(7, 7) entries in positive data as below

S ¼ 1
N

∑
L

j¼1
ð∑
N

i¼1
Mf ½Pj;Kij�Þ ´Wj ð7Þ

Where L is the length of the LMP(7, 7) item and equal to 18 in this study. N is the
number of known LMP(7, 7) items in positive data. Kij is the amino acid at position
j around a known LMP(7, 7) item Ki (i= 1, 2, 3, …, N). Wj is the weight score of
position j, andMf denotes the finally determined amino acid substitution matrix. In
pLIRm, we only consider LMP(7, 7) items following the cLIR motif.

The performance improvement part comprises two steps, including PWD and
SMO. The former is established based on the hypothesis that different positions in
LMP(7, 7) items might differentially contribute to the recognition of LC3/Atg8,
whereas the latter automatically generates an optimal amino acid substitution
matrix to measure the sequence similarity of different LMP(7, 7) items. We adopt a
refined PLR algorithm with two additional steps, including random mutation and
random zeroing to determine parameters.

(i) PWD: We initially use the amino acid substitution matrix BLOSUM62
(MBLOSUM62) to calculate an average similarity score at the position j of an LMP(7,
7) item P as Sj’:

S0j ¼ Wj
1
N

∑
N

i¼1
MBLOSUM62½Pj;Kij� ð8Þ

First, the weight score of each position Wj in the LMP(7, 7) item is set to 1.
Then the LOO validation is conducted to calculate the initial AUC value. The final
Wj vectors are computationally optimized by the refined PLR algorithm, based on
the highest AUC value

Wj ¼ W1;W2;W3; ¼ ;W18 ð9Þ
(ii) SMO: The average similarity value of an amino acid a in the given LMP(7,

7) item P and a residue b in all known LMP(7, 7) entries in positive data is defined
as Sab:

Sab ¼
1
N

∑
L

j¼1
Qj ´MBLOSUM62 a; b½ � ´Wj ð10Þ

Where Qj is the number of ab amino acid pairs at position j. In BLOSUM62, there
are 24 types of characters, including 20 types of amino acids and 4 non-canonical
characters (B, Z, X, and *). Thus, a number of ([24 * (24+ 1)]/2= 300) unique Sab
scores (Sab= Sba) are produced. Then, the updated PLR algorithm is used to
optimize all of the Sab scores to generate the final matrix Mf

Mf ¼ ðSAA; SAC ; SAD; � � � ; S**Þ300 ð11Þ
(iii) The refined PLR algorithm. To optimize the parameters in PWD and SMO,

the least absolute shrinkage and selection operator (LASSO, L1 regularization)
penalty is used. In the step of random mutation, a parameter is randomly selected
with +1 or −1 per time, and the result is adopted if the LOO validation AUC value
is increased. To avoid the local optimization, the random zeroing step is added by
randomly zeroing one parameter per time, and the manipulation is adopted if the
AUC value is increased. The two steps are iteratively performed until the AUC
value is not enhanced any longer. The improved PLR algorithm is implemented
under Python 3.6 with Scikit-learn 0.21 (https://scikit-learn.org/stable/), a widely
used machine-learning toolbox.

Collection of human cancer mutations. First, the human proteome set is down-
loaded from UniProt database36, which contains 20,659 unique protein sequences.
Then, we download human cancer mutations from the TCGA data portal (https://
portal.gdc.cancer.gov/, level 4 data, in May 2018)22. All available projects are down-
loaded, and gene names in TCGA files are used to map the mutation data to human
proteins. It should be noted that the clinical information is absent for the level 4
mutations. Also, we download all simple somatic mutations of ICGC release 28 from
ICGC data portal (https://dcc.icgc.org/releases/release_28/Projects, in November
2019) 23. For each project, the file “simple_somatic_mutation.open.*.tsv.gz” is
downloaded. Ensembl gene IDs (columns entitled ‘gene_affected’ in ICGC data) are
used to map ICGC mutations to human proteins. In addition, we obtain cancer
mutations of COSMIC in file ‘CosmicMutantExportCensus.tsv.gz’ downloaded from
the COSMIC website (https://cancer.sanger.ac.uk/cosmic/download, in Jan 2019) 24.
Ensembl transcript IDs are used to map COSMIC mutations to human proteins. In

total, we obtain 1,898,302, 4,306,716, and 5,806,067 human missense SNVs from
TCGA, ICGC, and COSMIC databases, respectively. We merge the three data sets
together, and there are 2,963,952 unique missense SNVs reserved after redundancy
clearance.

The collection of human ATG proteins and autophagy regulators. In a previous
study, we constructed a database named THANATOS (http://thanatos.biocuckoo.
org/) in order to collect, curate, annotate, and maintain important proteins and
post-translational modification events involved in regulating autophagy and cell
death pathways59,60. Here, 43 known ATG proteins and 875 autophagy regulators
in Homo sapiens are directly taken from THANATOS59,60. To avoid any missing
autophagy regulators, we also obtain 58 well-known autophagy regulators from a
previously published review61. After redundancy clearance, 911 human autophagy
regulators are reserved.

The pLAM algorithm. From the human proteome set, we detect 19,577 proteins
containing at least one tetrapeptide that follows the cLIR motif. Then, we define a
LAM as a missense SNV located within an LMP(7,7) region that potentially
influences the cLIR motif, and obtained 842,789 potential LAMs in 238,840 LMP
(7,7) items of 18,806 potential LIRCPs. Then, we use the positive LMP(7,7) items P
and negative LMP(7,7) items N to estimate the Bayesian posterior probability
(BPP). For a given LMP(7,7) peptide Pi, the score Si calculated by pLIRm is
transformed into a BPP value as below

p P; j; Si
� � ¼ f Si; j; P

� �
p Pð Þ

f Si; j; P
� �

p Pð Þ þ f Si; j;N
� �

p Nð Þ ð12Þ

As previously described18, the prior probability scores of p(P) and p(N) reflect
our belief in the distribution of P and N and are determined as the corresponding
AUC value and 1, respectively.

Then, pLIRm is used to calculate the values for all potential LAMs
(n= 842,789) before (xi, i= 1, 2, 3, …, n) and after (yi, i= 1, 2, 3, …, n) the
mutation, whereas all scores are normalized into BPP values. To estimate the global
probability density distribution of x and y, we hypothesize that the joint
probabilities within a very small interval might follow a Gaussian distribution. We
use the Parzen window method18, a nonparametric density-estimation approach, to
conjugate the Gaussian distributions in all continuous small intervals to estimate
the global distribution as below

f x; y
� � ¼ 1

nh2
∑
n

i¼1

1
2π

exp � x � xi
� �2 þ y � yi

� �2
2h2

" #
ð13Þ

Where h is the window width and the size of h influences the accuracy of the
probability density estimation. The maximum likelihood estimation (MLE) method
is used to determine the optimal h value as below

f x1;y1

� �
; x2;y2

� �
; � � � ; xn;yn

� �
jh

h i
¼ f x1;y1

� �
jh

h i
´ f x2;y2

� �
jh

h i
´ � � � ´ f xn;yn

� �
jh

h i
ð14Þ

For different h values (from 0 to 1, 0.0001 per step), we estimate the joint
probability density distributions for each LAM from the remaining ones, until all
LAMs are used once. The likelihood value is the product of n probability density
values, and the optimal h value that maximized the likelihood value is determined
as 0.0018 in this study.

For a given x score, the probability density distribution of its corresponding y
values is estimated, and the statistical significance of each y value is calculated,
respectively. Under a threshold of p value < 0.01, there are 74,319 potential LAMs
that significantly change 50,671 cLIR motifs in 14,717 proteins. In order to
distinguish the different impacts of LAMs on changing cLIR motifs, the mutated
score y is chosen as >0.5 for LAMs that potentially increase the binding affinity of
cLIR motifs to LC3 (Type I, y > x), and the original score x is selected as >0.5 for
LAMs that potentially decrease the binding affinity (Type II, x > y). Then, 935 Type
I and 2595 Type II LAMs that significantly influence 2942 cLIR motifs in 2561
proteins are reserved, respectively. Finally, we map these LAMs to known ATG
proteins and autophagy regulators so as to prioritize the 148 LAM-containing
LIRCPs potentially involved in human cancer through regulating autophagy.

The enrichment analyses. The hypergeometric test is adopted for the enrichment
analysis of 148 predicted LIRCPs (Supplementary Data 3). Here, we define

N= number of human proteins annotated by at least one term
n= number of human proteins annotated by term t
M= number of LIRCPs annotated by at least one term
m= number of LIRCPs annotated by term t
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Then, the enrichment ratio (E-ratio) is calculated, and the p value is computed
with the hypergeometric distribution as below

E � ratio ¼
m
M
n
N

ð15Þ

p value ¼ ∑n
m0¼m

M

m0

� �
N �M

n�m0

� �
N

n

� � ; ðE � ratio> 1Þ ð16Þ

In this study, only statistically enriched GO terms and KEGG pathways are
considered. GO annotation files (on 10 October 2019) have been downloaded from
the Gene Ontology Consortium Web site (http://www.geneontology.org/), and we
obtain 19,714 human proteins annotated with at least one GO biological process
term62. KEGG annotation files (released on 4 December 2017) have been
downloaded from the ftp server of KEGG (ftp://ftp.bioinformatics.jp/)63, which
contains 6956 human annotated genes.

The TCGA data with clinical outcomes. We download human cancer mutations
(*Mutation_Packager_Calls.Level_3.*), mRNA expression levels (*.mRNAseq_Pre-
process.Level_3.*), DNA methylation profiles (*.Merge_methylation_*.Level_3.*),
and clinical outcomes (*.Merge_Clinical.Level_1.*) from BROAD Institute (http://
gdac.broadinstitute.org/runs/stddata__latest/)22. All projects on 37 types of cancer are
downloaded, including adrenocortical carcinoma, bladder urothelial carcinoma, breast
invasive carcinoma, cervical and endocervical cancers, cholangiocarcinoma, colorectal
adenocarcinoma, colon adenocarcinoma, lymphoid neoplasm diffuse large B-cell
lymphoma, oesophageal carcinoma, GBMLGG, glioblastoma multiforme (GBM),
head and neck squamous cell carcinoma, kidney chromophobe (KICH), pan-kidney
cohort (KICH+KIRC+KIRP) (KIPAN), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), acute myeloid leukaemia, LGG, liver
hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma,
mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma,
pheochromocytoma and paraganglioma, prostate adenocarcinoma, rectum adeno-
carcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, stomach
and esophageal carcinoma, testicular germ cell tumours, thyroid carcinoma, thy-
moma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, and uveal
melanoma. In total, we obtain 798,478 missense SNVs with clinical outcomes in
11,148 tumor samples across 37 major cancer types/subtypes. The RNA-Seq by
Expectation-Maximization (RSEM) values of genes are reserved, as well as beta values
of methylation data. Gene names are used to map the TCGA data to human LIRCPs.

Survival analyses. First, we analyze the association between missense SNVs and
clinical outcomes of each cancer type. For each LAM-containing ATG protein and
autophagy regulator, patients with or without at least one cancer-derived SNV are
classified into two groups and compared with the two-sided log-rank test (p value
< 0.05). The Kaplan-Meier survival curves are illustrated by the R package surv-
miner v0.4.6 with the function of “ggsurvplot” (http://www.sthda.com/english/
rpkgs/survminer/). For each gene in the RNA-seq data, we adopt the Cox pro-
portional hazard model for overall survival data, and we stratify patients of each
cancer type into two groups as high and low mRNA expression. The two-sided log-
rank test is performed (p value < 0.05), and the Kaplan–Meier survival curves are
plotted by ggsurvplot. The same procedure is also conducted for analyzing DNA
methylation data (p value < 0.05).

Cell culture and transfection. HEK293T, H1299, A549, HCT116, HeLa, A2780,
MDA-MB-468, MGC803, HGC27, HT29, LO2, HepG2, MDA-MB-221, and H460
cells are obtained from the American Type Culture Collection (ATCC) and Cell
Bank of Chinese Academic of Sciences (Shanghai, China), respectively, and cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco), supplemented with
10% fetal bovine serum (FBS, Excellbio) and penicillin–streptomycin (Hyclone) at
37 °C in 5% CO2. For exogenous expression, cells are transfected with poly-
ethylenimine (PEI, Sigma) in serum and antibiotic-free medium, according to the
manufacturer’s instruction. The medium is changed after 4–6 h, and cells are
harvested after 48 h from transfection.

DNA constructs and mutagenesis. PCR-amplified STBD1 is cloned into
pcDNA3.1(+), mCherry-N1, or plvx-ires-neo. PCR-amplified ATG4B is cloned
into pcDNA3.1(+). Mutations are generated using the High-Fidelity PCR kit
(MACLAB).

Co-immunoprecipitation. Cells are harvested and lysed in lysis buffer (50 mM
Tris, pH 7.4, 50 mM NaCl, 0.5% Nonidet P-40) containing protease inhibitors
(Bimake), similar to previous studies64,65. Lysates are centrifuged at 14,000g for
20 min at 4 °C. Anti-FLAG gel (Bimake) is equilibrated with tris buffered saline
(TBS) before use. The supernatant from cell lysates is mixed with affinity gel and
incubated at 4 °C overnight. The samples are centrifuged at 5000 g for 30 s to pellet
the sepharose. The sepharose gel is washed by TBS three times, and sodium
dodecyl sulfate loading buffer is added for sodium dodecyl sulfate–polyacrylamide
gel electrophoresis and immunoblotting.

Tissue microarray, IHC, and staining intensity analysis. A tissue microarray
chip containing 28 pairs of human colon cancer tissues and matched adjacent
normal colon tissues is purchased from Shanghai Outdo Biotech CO., LTD.
(Shanghai, China, HColAde060CS01). The expression of STBD1 is evaluated with
the anti-STBD1 antibody (proteintech, 67018-1-Ig) by IHC at a dilution of 1:200.
The staining substrate was 3,3′-diaminobenzidine (DAB) and the nuclei is coun-
terstained with hematoxylin. Then the tissue microarray chip is scanned using
Pannoramic MIDI (3D HISTECH). The STBD1 expression was performed based
on staining intensity by analyzing the IOD of the dark brown color in each image
using NIH Image J software.

Fluorescence microscopy. Immunofluorescence experiments are performed as
previously reported66,67. HeLa cells are seeded onto circular coverslips in 24-well
plates and then transfected with indicated plasmids. After 24 h, cells are fixed with
4% paraformaldehyde and permeabilized with 0.1% Triton X-100, blocked using
5% FBS in PBS, and then incubated with anti-glycogen monoclonal antibody
(IV58B6) at 4 °C overnight68,69. Cells are then stained with Alexa Fluor 647 goat
anti-mouse IgG for 8 h at 4 °C and then incubated with Hoechst 33258 (Sigma).
After washing the cells three times in PBS, the images are captured using the
Olympus FV-1000 confocal microscopes and analyzed using NIH Image J software.

Glycogen assay. The glycogen levels are measured using the glycogen assay kit
(Solarbio), according to the manufacturer’s instructions. Briefly, 5 × 106 cells are
collected to ultrasonication and heated for 20 min at 95 °C. After 10 min of cen-
trifugation at 8000g, the supernatants are used to measure the level of glycogen.
The glycogen concentration is normalized to the cell protein concentration.

Lentiviral production and infection. HEK293T cells are co-transfected with len-
tiviral vectors expressing non-target control shRNA, shSTBD1, STBD1 WT, or
STBD1 W203C along with pHCMVG, pMDLg/PRE, and pRsv-Rev (shRNA/plvx:
HCMVG:pMDLg/PRE:pRsv-Rev= 3:1:1:1). After 48 h, the viral supernatants are
collected, filtered, and added with 4 μg/ml polybrene (YEASEN) to infect target
cells. After 72 h of infection, the target cells are cultured in a selection medium
containing 2 μg/ml puromycin (BBI life sciences) or 500 ng/μl G418 (Diamond).
Afterward, a fraction of cells is harvested to determine the knockdown efficiency or
overexpression of STBD1 using immunoblotting.

For CRISPR–Cas9-mediated gene knockout, gRNA sequences are introduced
into V2T construct via PCR. Constructs encoding Cas9 and gRNA are
cotransfected with viral packaging plasmids (V2T:psPAX2:pMD2.G= 2:1:1) into
HEK293T cells. After 48 h, the viral supernatants are collected, filtered, and added
with 4 μg/ml polybrene (YEASEN) to infect A549 cells. After 72 h of infection, the
target cells are cultured in a selection medium containing 2 μg/ml puromycin (BBI
life sciences). Afterward, a fraction of cells are harvested to determine the KO
clones using immunoblotting. The sequences of the short hairpin RNAs and
gRNAs are shown as below

shControl: TTCTCCGAACGTGTCACGT
shSTBD1: GCAATGGACATTTGATTTCTA
shATG4B: CAGCGTCCTCAACGCATTCAT
STBD1 gRNA 1: TAAAGTGGTTCACGCATGGT
STBD1 gRNA 2: GAATGGGGGAGTTACCCGCT

Cell proliferation assay. For cell proliferation assay, cells are seeded in 96-well
culture plates at 1000 per well. After 72 h (or 72 h after transfection with siRNAs),
cells are evaluated by the MTT assay kit (Servicebio). The absorbance is measured
at OD 570 nm. For colony formation, 1000–2000 stably expressing indicated genes
cells are seeded in 6-well culture plates. After 20 days of culture, the colonies are
fixed with fixing solution for 15 min and stained with 0.5% crystal violet for 15 min,
then washed with ddH2O. For colony formation after GAA siRNAs treatment,
500–1000 cells are seeded in 12-well culture plates and transfected with 3 different
siRNA molecules (siControl, siGAA-1, or siGAA-2), respectively every 3 days.
After 12 days of culture, the colonies are fixed with fixing solution for 15 min and
stained with 0.5% crystal violet for 15 min, then washed with ddH2O. The number
of colonies is analyzed by NIH Image J software.

Tumor xenograft. Human tumor xenografts are established using an established
protocol70. Briefly, fresh HCT116 cells (107 per mouse, re-suspended in 200 μl of
PBS) are subcutaneously injected into the flank of 5-week-old BALB/c nude mice
(Charles River). The tumor volumes are measured every 2 days using calipers and
calculated using the equation (length × width2)/2. 15 days after injection, the mice
are euthanized and tumors are isolated and weighed. Tumors are divided into two
factions, one for analysis by IHC and one for analysis by immunoblotting. For IHC,
the formalin-fixed, paraffin-embedded tumor sections are stained with antibodies
against c-Myc and Ki67 (Servicebio, GB13030-2). The tumor apoptosis is measured
by TUNEL staining using a TUNEL assay kit (Servicebio), followed by DAPI
counterstaining. The images are captured using the Olympus microscope, and the
integrated density or the percentage of cells staining positively for TUNEL is
determined using NIH Image J software. For immunoblotting, a fraction of tumors
is extracted in RIPA buffer (Beyotime), which then detected the expression of c-
Myc, AKT1 (CST, 2938), NF-κB1 (CST, 3035), STBD1 (proteintech, 10828-1-AP),
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and Tubulin (proteintech, 11224-1-AP). The animal welfare and experiments
conform to the guidelines for care and use of laboratory animals and are performed
according to the guidelines and approval of the Animal Investigation Committee of
the West China Second University Hospital, Sichuan University.

siRNA knockdown assay. Cells are seeded at 12-well culture plates and transfected
with siRNAs and non-targeting control siRNA using Lipofectamine RNAiMax
Reagent (Invitrogen) in OptiMEM medium, according to the manufacturer’s
instruction. The medium is changed after 4-6 h, and cells are harvested 72 h after
transfection. Knockdown efficiency is measured by qRT-PCR.

siControl: UUCUCCGAACGUGUCACGUTT
siGAA-1: CCUCCACUUCACGAUCAAATT
siGAA-2: GGAAUAACACGAUCGUGAATT

Gene expression profiling of cancer cells. Totally, 5 × 106 HCT116 cells are
harvested and lysed by TRIzol (Invitrogen). Total RNA is extracted according to
the manufacture’s protocol. RNA is then analyzed for purity by measuring the ratio
of absorbance at 260 and 280 nm using the NanoPhotometer Spectrometer
(IMPLEN CA, USA). The cDNA libraries are synthesized using NEBNext UltraTM
RNA Library Prep Kit for Illumina (NEB, USA), according to the manufacture’s
protocol. The size of the library insert fragments is measured by Agilent 2100
bioanalyzer. The suitable library fragments are sequenced on an Illumina platform
using 125 bp/150 bp paired-end technology.

To obtain clean data with high quality for downstream analysis, clean data are
obtained by removing reads containing adapter, poly-N and low-quality reads from
raw data. Reference genome (Hg38) and gene model annotation files (release 93)
are downloaded from ENSEMBL. Clean reads are aligned to the reference genome
using STAR 2.7.1a. The reads counts mapped to each gene are counted using R
package GenomicAlignments v1.18.1. Gene expression abundance are calculated by
RSEM v1.3.1, and transcripts per kilobase of exon model per million mapped reads
(TPM) of each gene is calculated based on the length of the gene and reads count,
and used to represent gene expression abundance. Differential expression analysis
of two groups (three biological replicates) is performed using DESeq2 1.22.2. Genes
with an | TPM fold change | >1 and p value < 10−5 are set as differentially
expressed. KEGG pathways enrichment analysis is performed by R package
clusterProfiler v3.10.1, and pathways with p value < 10−4 are considered as
significantly enriched by DEGs.

For the enrichment analysis of cancer hallmarks affected by STBD1 depletion,
1611 DEGs with a relaxed stringency are adopted (| TPM fold change | >1 and
p value < 0.01). From a well-curated resource named HOC database30, we obtain
known cancer hallmark genes that cover 11 hallmarks of cancer, including evasion
of anti-growth signaling, replicative immortality, sustained proliferation, genome
instability, cell death, immune evasion, invasion and metastasis, microenvironment,
angiogenesis, metabolism, and inflammation. Because multiple types of cells beyond
cancer cells are involved in forming the tumor microenvironment71, this hallmark is
not considered. Then, we map the 377 genes in the remaining 10 hallmarks to the
transcriptomic data, and the hypergeometric test is performed for each hallmark
using the 1611 DEGs (E-ratio > 1, p value < 0.01).

Differential expression analysis of shSTBD1/shControl, W203C/WT and WT/
plvx neo (three biological replicates) is performed using DESeq2 1.30.0. Genes with
relaxed p value < 0.05 are set as differentially expressed. KEGG pathways
enrichment analysis is performed by using a hypergeometric test, and pathways
with p value < 0.005 are considered as significantly enriched by DEGs.

Real-time PCR. Totally, 3 × 106 shControl HCT116 cells and shSTBD1 HCT116
cells are harvested and lysed by TRIzol (Invitrogen). Total RNA is extracted
according to the manufacture’s protocol. RNA is then analyzed for purity by
measuring the ratio of absorbance at 260 and 280 nm using the NanoPhotometer
Spectrometer (IMPLEN CA, USA). cDNA libraries are synthesized using One-Step
gDNA Removal and cDNA Synthesis SuperMix (TransScript, China) according to
the manufacture’s protocol. RT-PCR assay is carried out using 2× SYBR Green
qPCR Master Mix (Bimake, China), and the threshold cycle (Ct) value is measured.
TUBB is used as the housekeeping gene for normalizing genes, respectively. The
comparative gene expression is calculated with the 2−ΔΔCT method. All primers
used are synthesized from Sangon Biotech (Shanghai, Supplementary Data 9).

Metabolomic profiling of cancer cells. HCT116 cells stably expressing shControl
or shSTBD1 established as described above are cultured in DMEM supplemented
with 10% FBS for 24 h. Then shControl and shSTBD1 HCT116 cells (1 × 107) are
harvested and extracted using pre-chilled 80% (v/v) methanol as previously done72.
Briefly, the culture medium is removed, and cells are washed twice with ice-cold
PBS and extracted using pre-chilled 80% methanol. The lysates are then con-
centrated at 14,000g for 15 min, and the supernatant is collected to dryness using a
SpeedVac (Labconco, USA). The metabolites are re-dissolved using 80% methanol
and an injection volume of 3 μL is used for LC-MS/MS analysis. Metabolites are
analyzed by TSQ Quantiva (Thermo, CA) with an Ultimate 3000 LC system
(Thermo Fisher Scientific, USA). Data analysis and quantitation are performed by
the software TraceFinder 3.2 (Thermo Fisher, CA). For plotting the heatmap, the

original expression levels of each metabolite in the 6 samples are normalized using
the z-score transformation, one of the most used normalization methods73. The
mean expression value μ and standard deviation (SD) δ are calculated. For the
metabolite i with the expression level of xi, its normalized z-score is calculated as
below

zi ¼
xi � μ

δ
ð17Þ

For 13C6-labeled metabolites analysis, shControl and shSTBD1 HCT116 cells
are cultured in glucose-free DMEM (Gibco) supplemented with 2.25 g/L 13C6-
glucose and 2.25 g/L unlabeled-glucose for 12 h. The cells (1 × 107) are then
harvested and extracted using pre-chilled 80% (v/v) methanol as above. Unlabeled
cells are cultured in parallel in DMEM (Gibco) with equal concentrations of
unlabeled glucose to identify unlabeled metabolites. The metabolites are analyzed
by TSQ Quantiva (Thermo, CA) coupled with Ultimate 3000 (Thermo Fisher
Scientific, USA). MS/MS spectra are acquired with stepped NCE of 15, 30, and 45.
Data analysis and quantitation are performed by the software TraceFinder 3.2
(Thermo Fisher, CA).

Lactate secretion and glucose consumption. Cells are seeded in 24-well culture
plates at 5000 per well, after 48 h cell mediums are collected for assay. Lactate
secretions are measured using a lactate assay kit purchased from Nanjing Jiancheng
Bioengineering Institute and glucose levels are assessed by glucose assay kit (Robio)
according to the manufacturer’s instructions. The lactate or glucose concentration
is first normalized to protein concentration, and the relative concentration is
further normalized to that of shControl HCT116 cells.

Detection of cell survival rate. After Cells are seeded in 96-well culture plates at
4000 per well overnight, 2-DG (2-deoxy-d-glucose, Selleck) in different con-
centrations (0, 5.7, 16.7, and 50 mM) is added for incubation at 37 °C and 5% CO2

for 48 h. The cell survival rate in each group is evaluated by the MTT assay kit and
normalized to that of the control group (0 mM).

Re-construction of the LIRCP-regulating Network. From the 8 public databases
including ARN32, BioGrid37, IID38, inBio MapTM39, Mentha40, HINT41,
iRefIndex42, and PINA43, we collect 1,771,193 PPIs and 131,541 transcriptional
regulations of 18,839 human proteins from these databases, and map them to the
148 identified LIRCPs, 7 LC3 proteins and 14 proteins regulated by STBD1.
Among the 91 transcriptional regulations, there are 88 for STAT1 and 3 for
STAT3, respectively. Both two transcription factors, STAT1 and STAT3, are
important autophagy regulators73,74. Similar to previous studies33,34, the LIRCP-
regulating network is constructed and visualized with Cytoscape 3.7.2 software
package75.

Statistics and reproducibility. All experiments are performed at least in triplicate.
No statistical method is used to predetermine sample size and no data are excluded
from the analyses. All statistical data are presented as the mean ± SD. Statistical
significance of the difference is determined using Student’s t test. Differences are
considered significant at the p value < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq data is deposited into GEO with the accession code GSE173273 and
GSE173274 (secure: qjqdqioirdwptsl; secure: yfwtkymyrxyzjwx). The human cancer
mutations data, mRNA expression levels, DNA methylation profiles, and clinical
outcomes referenced during the study are available in public repositories from the TCGA
data portal (https://portal.gdc.cancer.gov/, level 4 data, in May 2018), ICGC website
(https://dcc.icgc.org/releases/release_28/Projects, in November 2019), COSMIC website
(https://cancer.sanger.ac.uk/cosmic/download, in Jan 2019) and BROAD Institute
(http://gdac.broadinstitute.org/runs/stddata__latest/). The source data underlying
Figs. 3,4,5,6 and Supplementary Figs. 3–10 are provided as a Source Data file. All the
other data supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The source codes of pLIRm and pLAM are submitted to GitHub (https://github.com/
BioCUCKOO/pLIRm-pLAM). The data sets including 105 LIRCPs with 127 known LIR
motifs and 18,806 human proteins containing at least one LAM are also submitted to
GitHub for ensuring the reproducibility of the analyses.
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